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Introduction 

Predictability in the Initial Sequence Numbers (ISN) used in a TCP/IP implementation can open up 
security holes. These numbers are used during the initial connection establishment of TCP: The 
initiator selects an ISN and sends it in a SYN packet to the responder. The responder selects its own 
ISN, and sends back a SYN packet to the initiator using its ISN and acknowledging the sequence 
number of the initiator. Finally the initiator responds by acknowledging the sequence number sent 
by the responder [Post]. It was pointed out in [Morr] and [Bell2] that an attacker can blindly forge a 
connection using any source address if the ISN value of the responder can be guessed. In order for 
such an attack to succeed, the exact value of the responder's ISN must be guessed.  

To combat this flaw, many TCP/IP implementers have adjusted their designs to generate ISN values 
that are harder to guess. One method of achieving this is to increment the value used as an ISN by 
a random amount for every new connection (and also at periodic intervals). Examples of systems 
using this method are FreeBSD [Free] and OpenBSD [Open].  

In this paper, we will analyze the properties of randomly incrementing ISN values and discuss 
some security weaknesses that remain in the TCP/IP stack when this method of ISN generation is 
used.  

Properties of Random Increments 

Random increments make it difficult to guess the next value a TCP implementation will choose for 
its next ISN, but they don't destroy all knowledge of what the next ISN will be. Clearly, after a single 
random increment, the range of the next ISN is still known. Surprisingly, even after many random 
increments, much can still be said about the range and distribution of ISN values.  

To illustrate this more clearly, let us assume that a random increment is applied with an even 
distribution of numbers from zero to nine teen (20 values). We will take, as the starting value, the 
sequence number of zero. Initially the distribution of possible ISN values is the single value zero, 
which has a probability of 100% (or 1.0) with all other values having a probability of 0%. After one 
random increment, the distribution of probable ISN values is evenly spread from zero to nineteen, 
each value having a probability of 5% (or 1/20). 

The distribution of values has spread out and lowered. Mathematically, what happened is that the 
initial distribution underwent a convolution with the random distribution used by the increment:  

 
 
where f is the distribution before the increment, r is the distribution that the increment is drawn 
from, and f' is the distribution after the increment.  



 

When further random increments occur, this convolution is again repeated. After four increments, 
the distribution quickly degenerates into a Gaussian distribution. This can be seen graphically in 
Figure 1. This is not a property of the distribution we started with, but is a general principle of 
probability theory known as the Central Limit Theorem [Hoel]. Had a random increment with a 
different distribution been used, we would eventually see the same result after several random 
increments.  

 
As random increments are applied to the ISN value, the range of possible values spread, and the 

distribution becomes Gaussian.  

As we continue to apply random increments, the Gaussian distribution continues to spread and 
flatten. In the following two plots, we show how the expected value and the standard deviation of 
the distributions grow with continued random increments. We observe that the expected value 
grows linearly. 

The growth of the standard deviation is proportional to x^1/2. Functions that approximate these 
values are:  

   

   

where m1 and s1 are the expected value and standard deviation of the random increment, 
respectively. For a mathematical derivation of these equations, refer to the appendix. Formulas for 
computing m1 and s1 for uniform distributions are also derived. 



 

 

Computing ISN Ranges 

To compute ISN values in practice, one must know the details of the ISN generation. In this section 
we will discuss the specifics of the OpenBSD [Open].  



 

The OpenBSD system uses random increments to update its Initial Sequence Number sent by the TCP/IP 
stack. There are three events that can cause the ISN number to be updated. The first is the reception of an 
incoming connection request. The second is initiation of a new outgoing connection. The last is a timer 
event that fires periodically. These are listed in the following table.  

Event Location 

Connection Request tcp_input.c 

Connection Initiation tcp_usrreq.c 

Timer (2 Hz) tcp_timer.c 

Each of these updates causes a random increment of size TCP_ISSINCR, or 125 * 1024, plus a 
definite increment of one. The value of the increment is drawn from a uniform distribution. The 
timer increment is implemented in such a way that the total increment per second will have a size 
of 2 * TCP_ISSINCR, even if the timer frequency is changed.  

We can easily derive equations for the mean and standard deviation of the distribution as a 
function of the number of increments applied by using the properties derived in the previous 
section. First, we must calculate the properties of the random increment. Using the formulas 
derived in the appendix, we derive the expected value of each increment as 64000 and the 
standard deviation as 36950. Note: to compensate for the definite increment of one in each 
increment, the expected value is one greater than the value given by the equation in the appendix. 
When these numbers are applied to the approximations derived in the appendix we get:  

   

   

where n is the number of increment operations that have occurred.  

These approximations agree quite well with observed behavior. We recorded 209 ISN values 
generated by an OpenBSD 2.8 machine at five-minute intervals. During this period no connections 
were made to or from the machine, other than the connection used to probe the ISN. There should 
have been 601 random increments performed between each probe. We calculated the size of the 
actual ISN increment between probes and collected them into bins with a spacing of 250000. The 
following plot shows the total fraction of increments that fell into each bin. The graph also shows 
the total fraction of increments that we expect to see in each bin using the approximation functions 
we derived. The two curves agree quite well.  



 

 

The approximations we derived can now be put to use to make predictions about ISN values that 
will be used in the future or ISN values that have been used in the past. Most important, we would 
like to know what the likely range of ISN values was or will be at a different time. First, we must 
calculate the number of increment operations that have or that will have occurred. We know that 
two increment operations happen every second. We don't know exactly how many increments have 
occurred due to incoming and outgoing connections to the machine. Fortunately, we can guess at 
a range of likely values for these numbers. We then compute the number of increments as the time 
difference plus the number of connections initiated or received.  

 

Having the number of increments, we compute the expected increment and the standard deviation. 
We can then predict the range of ISN values by considering the sequence numbers within a few 
standard deviations of the current ISN plus the expected increment value:  

   

   

where f/2 is the number of standard deviations around the mean we wish to consider. Because the 
distribution is Gaussian, we can select f to allow us to predict the sequence number to whatever 
accuracy we desire. 
 



 

The following values were derived from a normal distribution table:  

Factor f Certainty 

0.68 50 % 

1.65 90 % 

1.96 95 % 

2.58 99 % 

If the exact value of n was not known (for example, if the time of the connection was not known 
with certainty, or the number of connections was not known), we simply repeat the computations 
for the two extreme guesses:  

   

   

To illustrate these concepts, we present an example. We know that a connection was made 
between 25 and 30 minutes ago, and we estimate that no more than 50 connections have been 
made to the machine since. We choose a range of increment iterations that we think are likely:  

   

   

We then compute the range of probable ISN values that would have been realized, with 95% 
confidence:  

   

 
  

   

 
  

Note that we subtracted from the ISN, since we are computing a previous ISN value. Because of 
this, the ranges are also backwards. It is also worth noting that even though more than 25 minutes 
have gone by, the ISN values are still known, with a high level of confidence, to be in a range of 
only 49942108 values. This is only 1.2% of the range of total possible sequence numbers.  



 

This technique can be used to narrow down the range of possible sequence numbers, but for how 
long? We can calculate the maximum number of seconds that must expire before the range of 
possible ISN values is p percent of the total sequence space. This is done by assuming that 
increments occur only due to clock ticks. The percentage p of the total sequence space that the ISN 
value is likely to be within, with 95% certainty after s seconds, is:  

  
 

 
 

 

 
 

 

if we solve for s we get:  

  
 

 
 

 

 
  

This equation results in the following values:  

% Sequence Space Time 

1 12 hours 13 minutes 

10 50 days 21 hours 

50 3 years 177 days 

If the machine is accepting incoming connections or making outgoing connections, the amount of 
time it would take to spread over these ranges would be shorter.  

Implications 

Armed with a technique for guessing the range of an ISN, we now turn to practical applications. 
The ISN value is exchanged during initial TCP/IP session setup in a process known as a three-way 



 

handshake. After two peers decide to establish a connection and exchange their ISN values, the 
session continues to use sequence numbers to keep track of the bytes sent. At any time in a 
connection, the sequence number to be sent next will be the ISN of the sender plus the number of 
bytes already sent.  

TCP/IP is vulnerable to a number of attacks if the sequence numbers of the connection are known. 
If the ISN is known exactly, a forged three-way handshake can be performed without receiving any 
return traffic. This attack is discussed in [Morr] and [Bell2]. After a session is established, data and 
control packets can be inserted into the session if the proper sequence numbers are known. Each 
TCP implementation will keep track of the amount of space it is willing to buffer from the sender. 
This is known as the receive window. TCP implementations will accept data packets that are sent 
with sequence numbers within this window. Control packets such as FIN and RST packets are also 
processed if they are within this window Illegal control packets are also received if they are within 
the window, and result in the aborting of the established session.  

As a result, if a sequence number within the receive window is known, an attacker can inject data 
into the session stream or terminate the connection. If the ISN value is known and the number of 
bytes sent already sent is known, an attacker can send a simple packet to inject data or kill the 
session. If these values are not known exactly, but an attacker can guess a suitable range of values, 
he can send out a number of packets with different sequence numbers in the range until one is 
accepted. The attacker need not send a packet for every sequence number, but can se nd packets 
with sequence numbers a window-size apart. If the appropriate range of sequence numbers is 
covered, one of these packets will be accepted. The total number of packets that needs to be sent 
is then given by the range to be covered divided by the fraction of the window size that is used as 
an increment.  

To illustrate this more clearly, let us return to the example used in the previous section. After more 
than 25 minutes, it was noted that the initial sequence number must be within a range of 
49942108 values. If we know that no more than 1 Megabyte of data has been sent over the 
connection, then the sequence number is likely to be within a range of 50990684 values. 
OpenBSD typically advertises a receive window of 16 kilobytes. If we assume that the receiver's 
buffers are no more than 50% full at the time of the attack, we can use an increment of 8000 
between the sequence number of each packet sent out. To kill the connection, we need only 
generate 50990684 / 8000 or 6374 SYN packets within the guesse d range. Not counting 
hardware encapsulation, this represents only 250 kilobytes of data, which would take no more 
than a few seconds to transmit over medium-bandwidth links.  

Fixes 

An alternate solution to fix the problems originally discovered by Robert Morris was proposed in 
RFC 1948 [Bell1]. This solution partitions the sequence space by connection identifiers. Each 
connection identifier, which is composed of the local address and port and the remote address and 
port of a connection, is assigned its own unique sequence space starting at an offset that is a 
function of the connection identifier. The function is chosen in such a way that it cannot be 
computed by an attacker. The ISN is then be generated by increments to this offset. ISN values 
generated in this way for one connection are independent of the ISN values generated for other 
connections. Because of this, observed ISN values cannot be used to infer ISN values of other 
connections. This method of ISN generation is not susceptible to the problems outlined in this 
paper.  



 

TCP streams can also be cryptographically protected. One such method is outlined in RFC 2385 
[Heff] as a stopgap measure for protecting BGP streams. Although the proposal has some 
weaknesses, it can effectively protect against attacks that inject data or control messages into TCP 
streams.  

The techniques outlined in this paper narrow down the range of sequence numbers used by a 
connection to an acceptable range that make attacks feasible. As networks become faster and 
computers use increasingly larger receive buffers, it will become more feasible to perform attacks 
without any information about what range of sequence numbers are in use. It may eventually be 
necessary to increase the size of TCP's sequence space to prevent such attacks. This could be done 
through the addition of a new TCP option similar to the TCP timestamp option outlined in RFC 
1323 [Jaco].  

The ultimate solution to network tampering is the deployment of widespread encryption and 
authentication between Internet peers. Although protocols protecting IP traffic between peers exist, 
they are currently not in widespread use due to political and technical issues that are not yet 
resolved.  

Conclusions 

Although random increments have been successful against protecting TCP initial sequence 
numbers against earlier attacks, we have discovered that they still leave weaknesses in TCP 
implementations that use them. Better methods of ISN generation have been available for some 
time and should be used. In the future, even the most sophisticated method of ISN generation may 
not be able to protect TCP from sequence number attacks. Although TCP can be extended to 
provide increased protection by enlarging its sequence space size, cryptographic protection 
between Internet peers would provide the most complete solution to network tampering.  
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Appendix 

Derivation of the Change in Distribution 

In this section, we will derive approximation functions for the growth in the standard deviation and 
expected value of the distribution with the number of random increments. We begin by noting that 
after 25 iterations of random increments, the distribution can be approximated by a normal 
distribution n(m_25, s_25^2) with mean (or expected value) m_25 and standard deviation s_25. 
This is a direct application of the Central Limit Theorem of probability theory. Let X_25 be a 
random number chosen from this distribution. It follows that after 50 iterations, the random 
increment is the sum of two such randomly chosen numbers: X_50 = X_25 + X_25. The sum of 
any two random variables chosen with from normal distributions n(m1, s1^2) and n(m2, s2^2) is 
n(m1 + m2, s1^2 + s2^2). It follows that the distribution of X_50 is then n(2 m_25, 2 s_25^2).  



 

In general, the mean and standard deviation after n such random increments is given by:  

   

   
We interpolate this to individual iterations by:  

   

 
  

 
  

   

 
 

 

 
  

By noting that m[1] is (m_25 / 25) and s[1] is (s_25 / sqrt(25)) we can rewrite this as:  

   

   
Where m1 and s1 are the values m[1] and s[1] respectively.  

We note experimentally that the values m1 and s1 are the expected value and standard deviation 
of the distribution of random values that the random increment was chosen from.  

Properties of Uniform Distributions 

In this section we derive the expected value and the standard deviation of uniform distributions of 
arbitrary widths. A uniform distribution has equal probability for all values over a specific range. 
We will call this range the width, or w for short. Because the sum of all values in the probability 
density function must equal 1.0, the probability density function for a uniform distribution of width 
w is given as:  

 
 



 

The rth moment of any distribution is given as:  

   

 
 

 

 
 

 
The expected value of f is the first moment EX, or: 

   

 
 

 

 
 

 
The second moment is : 

  
 

 
 

 
The standard deviation is then:  

   

 
 

 

 
 

 
   

   



 

  
 

 
 

 

 
  

Implementation Specific Constants 

OpenBSD 

The random increment used by OpenBSD was analyzed in a previous section. The resulting values 
of m_1 and s_1 are 64000 and 36950 respectively.  

FreeBSD 

FreeBSD increments its ISN value twice a second and once for each incoming and outgoing 
connection request. For each incoming and outgoing connection request, the ISN value is 
incremented by a definite amount of 31232 and by a random increment of size 65536. It is also 
incremented by twice this amount (31232 plus a random increment of size 131072) twice a 
second. If m_c and s_c are the mean and standard deviation of the first (smaller) increment, then 
the mean and standard deviation of the larger increment are 2 m_c and sqrt(2) s_c respectively. 
Gathering the distributions for both of these increments into a single equation results in:  

   

 
  

 
  

  
 

 
  

 
  

Where n is the sum of the number of incoming connections, outgoing connections and seconds. 
The values of m_c and s_c are 48384 and 18920 respectively. It follows then that m_1 is 96768 
and s_1 is 26757.  



 

NetBSD 

NetBSD [NetB] does not use a random increment to update its ISN value, but it does use a similar 
technique. Twice a second, and once for each incoming and outgoing connection, a definite 
increment is added to an internal ISN value. Actual ISN values are then generated by adding a 
random value to this internal variable. The result of this algorithm is that the range that the ISN is 
in is always known to 100% accuracy if the number of increments is known, and the ISN is always 
distributed evenly across this range. The size of the definite increment and the maximum size of the 
random value are 16777216 or 1/256 the of the total sequence space. Because the size is so large, 
this technique is more resilient to attack. An attacker would have to know the number of increments 
that have occurred to within a few increments to narrow down the sequence space significantly.  
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