DetectingBackdoors

Yin ZhangandVernPaxsorf

Abstract

Backdoors areofteninstalledby attaclerswho have compro-
mised a systemto easetheir subsequenteturnto the sys-
tem. We considerthe problemof identifying a large classof
backdoorsnamelythoseproviding interactize acces®n non-
standargborts,by passiely monitoringasite’s Internetaccess
link. We developageneraklgorithmfor detectingnteractve
traffic basedon paclet sizeandtiming characteristicsanda
setof protocol-specifi@algorithmshatlook for signatureslis-
tinctive to particularprotocols.We evaluatethealgorithmson
large Internetaccesdracesandfind thatthey perform quite
well. In addition,someof thealgorithmsareamenabléo pre-
filtering using a statelespaclet filter, which yields a major
performancdncreaseat little or no loss of accurag. How-
ever, the succesf the algorithmsis temperedby the dis-
covery thatlarge siteshave mary userswho routinely access
whatarein factbenignbackdoorssuchassenersrunningon
non-standargortsnotto hide,but for mundanedministratve
reasonsHence backdoometectionalsorequiresa significant
policy componentfor separatingallowable backdooraccess
from surreptitiousaccess.

1 Intr oduction

A backdoor is a mechanisnsurreptitiouslyintroducedinto a
computersystemto facilitate unauthorizedaiccesgo the sys-
tem. While backdoorganbeinstalledfor accessing variety
of servicespf particularinterestfor network securityareones
that provide interactve access.Theseare often installedby
attaclerswho have compromised systemto easetheir sub-
sequenteturnto thesystem.

From a network monitoring perspectie, suchbackdoors
frequentlyrun over protocolssuchasTelnet[PR834, Rlogin
[Ka91], or SSH[YKSRL99]. An exampleof anon-interactie
backdoomwouldbeanunauthorized SMTPsener[P083, say
to facilitate relaying email spam;and one someavhatin be-
tweenwould bean FTP[PR85 backdoomusedto provide ac-
cessto illicit contentsuchas piratedsoftware, or a Napster
sener[NA99] runin violation of a site’s policy.

Backdoorsare, by design,difficult to detect. A common
schemdor maskingtheirpresencés to runasenerfor astan-

*Y. Zhangis with the ComputerScienceDepartmentCornellUniversity
Ithaca, NY. Email: yzhang@cs.cornell.eduV. Paxsonis with the AT&T
Centerfor InternetResearctat ICSI, at the InternationalComputerScience
Institutein Berkeley, CA, andwith the LawrenceBerkeley NationalLabora-
tory. Email: vern@aciri.ag. This paperappearsn theProceedingsf the9th
USENIX SecuritySymposiumPerver, Colorado August2000.

dard servicesuchas Telnet, but on an undistinguishedort
ratherthanthe well-known port associatedvith the service,
or perhapson a well-known port associatedvith a different

service. In this paperwe examinethe problemof detecting
backdoors,particularly interactve ones, by inspectingnet-
work traffic usinganintrusiondetectiorsystem(IDS), where
we presumethat thereis a large volume of legitimate traf-

fic which mustbe distinguishedrom the illegitimate traffic.

To our knowledge,this problemhasnot beenpreviously ad-
dressedn theliterature.

Our generalapproachis to develop a set of algorithms
for detectingdifferenttypesof interactve traffic. Theseal-
gorithmscan then be appliedto a traffic streamand when-
everthey detectinteractivetraffic usinganon-standardervice
port, we have found someform of backdoor

Therestof thepapelis organizedasfollows. In § 2, we dis-
cussthe designconsiderationgnd examinethe tradeofs of
differentapproachesin § 3, we developa generalalgorithm
for detectinginteractve traffic basedon its timing character
istics, andin § 4 we presenta numberof protocol-specific
algorithms.In § 5, we evaluatethe algorithmsusingtracesof
Internettraffic. We summarizen § 6.

2 DesignSpace

A basicprinciple for backdoordetectionis to find distinctive
featuresndicative of the actvity of interest,beit generalin-
teractiveaccessor useof aspecificprotocolsuchasSSH.The
morepowerful afeatureis for distinguishingbetweergenuine
instance®f theactvity andfalsealarmsthebetter

Candidatedor suchfeaturesinclude the specificcontents
of the datastreamthe sizeandtransmissiomateof the pack-
etsin the stream,andtheir timing structure. This lastis po-
tentially very powerful for detectinginteractve traffic: stud-
ies of Internettraffic have foundthattheinterarrivalsof user
keystrokes have a striking distribution [DJCME92 PF95],
namelya Paretowith infinite variance Thereis alsothe possi-
bility thatacombinatiorof featureswill proveto have greater
distinctive powerthanary onefeatureby itself.

We now turn to a discussiorof varioustradeofs thatarise
whenconsideringhow to developdetectionalgorithms.

2.1 Openvs.evasie attackers

In general,network intrusiondetectionbecomesnuchmore
difficult whentheattacleractively attemptdo evadedetection
by the monitor[PN98 Pa9g. Much of the difficulty comes

from the ability of attaclersto exploit ambiguitiesin atraffic
stream Fromamonitoringperspectie, heuristicamightwork
well for “open” (non-evasive) attaclers,but completelyfail in
thefaceof anactively evasve attacler.

While ideally ary detectionalgorithmswe develop would
of courseberesistanto evasive attaclers, ensuringsuchro-
bustnescansometimedbe exceedinglydifficult, andwe pro-
ceedhereontheassumptiorthatthereis utility in “raisingthe
bar” even when a detectionalgorithm can be defeatechy a
sufficiently aggressie attacler. We furthernotethatif anat-
tackerfully controlshoth theremoteandthelocalhost,andin
particularif they are patientand/orableto deploy arbitrary
software, then all sortsof devious covert channelsbecome
possiblé [G193], andbackdoomdetectiorbecomegssentially
hopelessWe do notattempto addresshe problemof detect-
ing covertchannels.

Thus,we proposethe algorithmsin this papernot assolu-
tions, but merelyaswaystationsn the ongoing“armsrace”
betweenrattaclersandintrusiondetection.Oneform of arms
racewe anticipateis particularlylikely is betweerthe devel-
opersof Napste[NA99] (andGnutellal GNOQ]) andour cor-
respondingletectionalgorithm.Napstethasa history of sites
attemptingto controlits use,and of usersattemptingto cir-
cumwent theserestrictions[We0(, and our algorithm gives
sitesa new tool for detectingsurreptitioususeof Napster

2.2 Passvevs.active monitoring

Onetradeof is whethemwe only allow themonitorto perform
passve monitoring,or if it canactively inject traffic into the
network. Passve monitoring hasthe adwvantagethat it can-
notdisturbthe normaloperationof the network. Onthe other
hand,anactive monitorcouldaugmentts backdoormetection
by trying to connecto suspectedbackdoorsn orderto probe
thesenerlisteningonthe portto determindts service.How-
ever, doingsocouldin principletip off the attacler asto the
presencef themonitorandthe discovery of thebackdoor

In this papemwe confineoursehesto monitorsthatonly use
passve monitoring.

2.3 Contentvs.timing

A natural approachfor detectingconnectionso command
shellsenersis to monitorthe keystrokeslooking for common
shellcommands.Sucha content-basedpproacthasseveral
drawbacks however:

e Scanningeach byte in eachincoming paclet is very
expensve, especiallyif we must first reassembl& CP
streamsto defeatthe sort of evasionscharacterizedn
[Pa9g. Theintrudercanthenoverloadthe monitor by
generatinga largeamountof legitimatetraffic.

1See[Ra0(q for adiscussiorof experiencesvith runningNFS over email
by tunnelinglP pacletsover messagedeliveredby SMTR.

e Many commandshellsallow the userto definealiases
and editing charactersyhich can easily defeatthis ap-
proachunlessthe monitorperformsaliasandediting ex-
pansiorof thecommandgsuchasalsorequiredfor “bot-
tleneck”analysigLWWWG98]). Notethatthis problem
canariseeitherinadwertently becausehe attacler asa
matterof courseusesaliasesor redefineghe editing se-
guencesor deliberatelywhentheattacleris attempting
to evadedetection.Theformercasemaybeamenabl¢o
heuristicanalysisthelatterlikely is not.

e Theintrudercaneasilyevadethe monitorby encrypting
their contenteither throughsomeapplication-leel en-
cryption method,or directly using encryptedprotocols
suchasSSH.

In contrastfiming-basedlgorithmscanbe completelyun-
perturbedy the useof encryption.However, timing informa-
tion canbecomedistorteddueto clock skew, propagatiorde-
lays,loss,andpacletizationvariations.Making timing-based
algorithmrobustagainsisuchnoiseis challenging.

2.4 Filtering

An importantfactorfor the succes®f real-timebackdoorde-
tectionis filtering. The moretraffic thatcanbe discardecbn
a perpaclet basisdueto patternsn the TCP/IPheadersthe
better asthis cangreatly reducethe processingoad on the
monitor. As we will seein subsequengectionsfiltering can
sometime$ehighly effectivein winnowing down alargetraf-
fic streamto justafew pacletsof interest.

However, thereis clearly a tradeof betweenreducedsys-
temloadandlostinformation. First, if a monitordetectssus-
piciousactiity in afiltered stream pftenthefiltering hasre-
movedsufficientaccompayging contet thatit becomegyuite
difficult to determineif the actvity is indeedan attack. In
addition, the existenceof filtering criteriamakesit easierfor
the attaclersto evadedetectionby manipulatingtheir traffic
sothatit nolongermatcheghefiltering criteria. For example,
an evasionagainsffiltering basedon paclet size (seebelow)
is to usea Telnetclient modifiedto senda large numberof
do-nothingTelnetoptionsalongwith eachkeystroke or line
of input.

In addition, relianceon filtering cansignificantly magnify
theproblemof “chaff,” i.e., attaclersgeneratingpogustraffic
that matcheghe filtering criteriain orderto overwhelmthe
monitor’s analysidoad, and/orto generatea hugenumberof
falsepositives,in orderto maskatrueattack.

Threepossibl€filtering criteriafor backdooretectiorare:

e Packet size. Keystroke paclets are quite small. Even
when entire lines of input are transferredusing “line
mode” [Bo9(], paclet payloadswill tendto be much
smallerthanusedfor bulk-transferprotocols.Therefore,
by filtering pacletsto only capturesmall paclets, the
monitor cansignificantlyreduceits paclet capturdoad.

o Directionality. In generalaninteractive connectiorsuch
asTelnetis initiated by the client ratherthanthe sener,
unlessthe attacler setsup somesortof callback mecha-
nism. This makesit possibleto filter connectiondased
ontheir directionality (inboundvs. outbound).If we are
monitoringaninternetaccessink andareonly interested
in detectingbackdoorsatthelocal site, we canlimit our
monitoringto just inboundconnectionswhich cansig-
nificantly reducethe paclet captureload (for example,
by filtering out outboundWeb surfingconnections).

Note that thereis alsoa “cold start” problemwhenthe

monitor startsrunningand needsto analyzean existing

traffic stream.In this casejt generallycannotdetermine
whetherthe traffic was initiated inboundor outbound,
andaccordinglycannoffilter it out.

e Packet contents. Whenwe areinterestedn identifying
specificinteractive protocols,t is sometimegpossibleto
filter incomingpacletsbasedon patternsspecificto the
protocol.An exampleis SSH,discussedh § 4.1 below.

2.5 Accuracy

As with intrusion detectionin general,we face the prob-
lem of fal se positives (non-backdooconnectiongrroneously
flaggedasbackdoorspndfal se negatives (backdoorconnec-
tions the monitor fails to detect). The former can make the
detectionalgorithmunusablebecausét becomesmpossible
(or atleasttoo tedious)to examineall of the alertsmanually
andattaclerscanexploit thelatterto evadethe monitor.

We would of coursdik e to have boththefalsepositive rate
andthefalsenegative ratebe aslow aspossible.But particu-
larly for thoseof ouralgorithmsthatarebasedn overalltraf-
fic characteristicsatherthansharpsignaturesye frequently
will haveto choosdradeofs betweerthetwo.

2.6 Responsveness

Anotherimportantdesignparameters the responsienessf
the detectionalgorithm. Thatis, aftera backdoorconnection
startshow long doest take for themonitorto detectheback-
door?Clearly, it is desirabldo detectbackdoorasquickly as
possiblefo enablgakingadditionalactionssuchasrecording
relatedtraffic or shuttingdown the connection.However, in
mary casewaiting longerallows the monitorto gathemmore
informationandconsequentlgandetectbackdoorsmoreac-
curately resultingin atradeof of responsienessersusaccu-
ragy.

Another consideratiorrelatedto responsienessconcerns
the systemresourcesonsumedy the detectionalgorithm.
If we wantto detectbackdoorsquickly, thenwe musttake
carenotto requiremoreresourceshanthemonitorcandevote
to detectionover a shorttime period. On the otherhand, if
off-line analysids sufficient, thenwe canusemoreresource-
intensive algorithms.

3 A General Algorithm for Detecting
Interacti ve Backdoors

In this sectionwe presenta generalalgorithmfor detecting
interactve backdoordasedn keystroke characteristicsThe
algorithmincorporateghreetypesof characteristicsdirec-
tionality, paclet sizes,andpaclet interarrival times. We also
find we needto excludeexcessiely shortflows (commonin

our tracesdueto the useof scanningoy automatednonitor

ing software),which do not provide enoughtraffic to analyze
soundly Thecriterionwe useis to skip analysisof ary flows

comprisedof fewerthan8 pacletsor lastinglessthan?2 sec-
onds,wherea flow is one direction of a bidirectional TCP
connection.

3.1 Exploiting connectiondir ectionality

As notedabove, aninteractive connectioris mostlik ely initi-
atedby the client, unlessthe sener hassomecallbackmech-
anism.Thereforewhenlooking for keystrolkeswe needonly
considettraffic sentby theinitiator of aconnectionHowever,
if themonitordoesnt seetheestablishmertf theconnection,
thatis, theconnectioris apartial connectionthereis noway
to tell who is the actualinitiator. In this case,we mustcon-
siderbothflows.

If we aremonitoringanaccessink andareonly interested
in detectingbackdoorswithin the local site, we canfurther
exploit the connectiordirectionalityandignoreall outbound
flows, evenif the connectionis partial.

3.2 Exploiting packet length characteristics
3.2.1 The sizeof keystroke packets

Keystroke pacletsarelikely to be very small, evenif sentin

line mode,becausenostcommandsareshort. To verify this
assumptionywe analyzedseveral Internettraffic traceswith a
total of 2.1 million TelnetandRlogin client datapaclets. Of

these,79% carrieda singlebyte, 97% carried3 bytesor less,
and99.7%carried20 bytesor less.

For atraceof SSH1.x and2.x connectiongvery heaily
skewedtowardsl.x), we foundthat28% of the 150K client
datapacletshadlength20 or less.(NotethatthoseSSHcon-
nectionswith predominantlybig pacletsarelikely to be file
transfers.)

Consequentlywe use 20 bytesas our cutoff for “small”
paclets.

3.2.2 Characterizing the fr equencyof small packets

Sincemostkeystroke pacletsarequite small,we canexclude
thoseconnectionshatdon't have enougtsmallpaclets.More
specifically we candevise a metricto measurghe frequeng
of smallpacletsin a connectionwhich we thenuseto deter
minewhethemwe shouldexcludethe connection.

The simplestmetric is the ratio of the numberof small
pacletsover the total numberof paclets,for a suitabledef-
inition of “small paclet; which perthe previous sectionwe
defineas20 bytesor lessof payload.Unfortunatelythis met-
ric doesnt work well in practice. Although, asstatedin the
previous section,over 99.7% of keystrokes are very small,
such statisticsare basedon a large numberof connections.
For a specificconnectionwe find thattheratio canbe aslow
as30-40%. Consequentlyin orderto preventfrequentfalse
negatives,we have to choosea conserative thresholdaslow
as20-30%. But with sucha low thresholdthe metricshave
little discriminatingpower and canintroducetoo mary false
positives.

To avoid suchproblemswe deviseda metricT", definedin
termsof S, thenumberof smallpaclets, N, thetotal number
of paclets,andG, thenumberof gapsbetweersmallpaclets.
A gapoccursary time two small pacletsare separatedby at
leastonelarge paclet. We thenevaluate:

_§5-G-1

r
N

The intuition behindT is that consecutie small pacletsare
strongindicatorsthat a connectionhasinteractve traffic. If
thesmallpacletsareall spreadhroughouta connectionthen
wewill have G = S — 1, sol’ = 0. If they areall grouped
togetherthenG = 0 andT" will reflecttherelative proportion
of smallpacletsin thetrace.

In ourfinal algorithm,we setthethresholdo I = 0.2.

3.3 Exploiting timing characteristics

As mentionedabove, keystroke interarrval times comein
a striking Paretodistribution, exhibiting a very broadrange
[PF95. We can then exploit the tendeng of machine-
driven, non-interactie traffic to sendpaclets back-to-back,
with a very shortinterval betweerthem,to discriminatenon-
interactve traffic from interactve. We do so by examining
eachpair of back-to-backsmall paclet arrivals and comput-
ing the ratio a of how mary of theseinterarrival timesfall
within therangel0msechrough?2 sec.(We needto take care
notto includeretransmittegbacletsin this computation.)The
upperboundof 2 secis fairly arbitrary;using100secdoesnot
appreciablychangehe performance.

We then definea metric o to quantify how often the in-
terarrival betweerntwo consecutie small pacletsfalls in this
range.In ourfinal algorithm,we setthethresholdo a = 0.2.

It mightappeathatthecriteriaof I' = 0.2 anda = 0.2 are
toolax, andsingularly they are;but jointly, they prove highly
effective,aswe shavin § 5.7.

3.4 Making the algorithm run in real-time

In this sectionwe discusswo considerationin usingthe al-
gorithmin real-time. First, we obsere that we canreduce
the paclet captureload a greatdeal by filtering on the data

payloadlength of the pacletsto only capturesmall pack-
ets.tcpdump [JLM91] doesnt actuallyhave aneasyway to
specifya particularrangeof payloadsizes,but the following
will filter outall pacletswith morethan20 bytesof payload:

(packet length -

ip header length -

tcp header length) <= 20.

That is, data length <= 20.
(ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) <= 20

wherethe bit-shifting is requiredto extractthe IP and TCP
headelengths which canbe variablelengthdueto the pres-
enceof IP or TCPoptions.

Introducingfiltering doesnot affect the evaluationof « for
a flow, since« is only computedfor paclets that are con-
secutve in the TCP sequencespace(§ 3.3). However, we
musttake carewhen evaluatingT’, since now that we only
seesmallpaclets,we cant accuratelytell thetotal numberof
paclets N transmittedby a given flow. To solwve this prob-
lem, whenerer we seea gap in the sequencenumber we
estimatethe numberof missinglarge pacletsin the gapas
[ga/ LARGE_PKT_SIZE], where LARGE_PKT_SIZE is a
guessat the mostcommonsize for full-sized paclets. This
size varieswith path characteristicsuch as the Maximum
TransmissiorUnit, and also depend=on the particular TCP
implementationput asa roughapproximatiorwe simply use
LARGE_PKT_SIZE = 500.

The other consideratiorfor real-time detectionconcerns
how quickly thealgorithmcandetermingt hasfounda back-
door. For off-line analysisjt suficesto checkwhethera con-
nectionhasbackdoorcharacteristicavhenthe connectiorter-
minates(or whenthe traceends),andaswe have definedI’
anda above, they arein termsof statisticscomputedover a
connectionstotal lifetime.

Thesimplestway to adaptthe algorithmto runin realtime
is to reevaluatel’ anda on eachincomingpaclet. Alterna-
tively, we canhave a timer for eachconnectionandtestthe
connectionwhenever the timer goesoff. Unfortunately nei-
therapproachworks well in practice. The major problemis
thatwhenwe classifyaconnectiorasanon-backdooconnec-
tion, we cant justignorethe connectioriateron, becausét’s
hardto tell whetherthe connectionis indeeda non-backdoor
connectionpr insteadactuallya backdoorconnectiorwith a
preamblethat hasnon-backdoorcharacteristicgsuchasthe
Telnetoptionnegotiationsthatprecedea Telnetlogin dialog).
Consequentlywe have to keepre-testingeachnon-backdoor
connectionwhichis clearlyvery expensve.

We addresghis problemby exponentiallybackingoff the
reevaluationtimer. We initially choosea smalltimeoutvalue
for thetimer (30 seconds)Subsequentlywhen&eraconnec-
tion appeardo be a non-backdogrwe increasethe timeout
valueby afactorof 1.5,which spreadshecomputationaload
overthelifetime of the connection.

4 Special-Pupose Detection Algo-
rithms

In this sectionwe explore algorithmsthatlook for signatures
reflecting the use of particular protocols. If we then find
senersfor thoseprotocolsrunningon portsotherthantheir
standardbnes,suchinstancesnayindicatethe presencef a
backdoor

Comparedto the general-purposedetection algorithm,
special-purposalgorithmscan betterbenefitfrom protocol-
specificinformation,andhencearelikely to bemoreaccurate
or more efficient. On the other hand, relying on protocol-
specificinformation can malke the algorithm susceptibleto
evasion,if theattaclercanperturbthesignature.

Thereare two major applicationsfor special-purposele-
tectionalgorithms. First, they canbe usedasbaselinealgo-
rithmsto evaluatethe performancenf the general-purposal-
gorithmdescribedn § 3, allowing usto understan¢how much
performanceve lose by makingthe algorithmmore general
(and hencemore difficult to evade). Second,the special-
purposealgorithmsthemseles can be usedeither individu-
ally or in combinatiorwith the general-purposalgorithmto
detectbackdoors.

In the restof this section,we introducel5 algorithmsfor
detectingvariousinteractive protocolsandthelike. Basedon
differentdesignpurposeswe candivide thesealgorithmsinto
thefollowing two classes:

e Optimal algorithmsare designedo identify backdoors
as accuratelyas possible,without worrying abouteffi-
cieng. Suchalgorithmsareintendedfor useasbaseline
algorithmsandfor off-line analysis.

¢ Efficient algorithmsincorporateprotocol-specifidilter-

ing mechanismgnto the optimal algorithmsto reduce
their expense at the costof a degreeof accurag. The
tradeof herevariesa greatdeal—sometimed is even
possibleto usea simple paclet filter to achieve accu-
ragy in the sameleagueasfor muchmoreexpensve al-
gorithms(see§ 4.1 belov)—andthe gainis algorithms
efficientenoughto usefor real-timedetection.

Tablel summarizeshe algorithmsdiscussedn therestof
this section.

4.1 SSH

SecureShell (SSH)encryptstransmittedcontentwith strong
cryptography It is increasinglyusedfor bothinteractve and
bulk transfertraffic. While all in all its deploymentrepresents
a major advancefor Internetsecurity it presentssignificant
difficultiesfor content-basethtrusiondetectionpreciselybe-
causét renderghemonitorblind to thespecificsof eachcon-
nection.lt is thusparticularlyattractive for backdooruse.
Ourfirstalgorithmfor detectingSSH,ssh-sig usegthe SSH
versionstringasthesignaturdor SSH.WhenanSSHconnec-
tion hasbeenestablishedyothsidessendanidentifying string

| Backdoortype || Optimalalgorithm | Efficientalgorithm |

SSH ssh-sig ssh-len ssh-sig-filter
Rlogin rlogin-sig rlogin-sig-filter
Telnet telnet-sig telnet-sig-filter
FTP ftp-sig ftp-sig-filter
Rootprompt root-sig root-sig-filter
Napster napster-sig napstersig-filter
Gnutella gnutella-sig gnutella-sig-filter

Table1: Summaryof the special-purposbackdoordetection
algorithms.

of the form “SSH-protwersion-softvaresersion comments”,
followed by carriage-returrand newline (ASCII 13 and 10,

respectiely) [YKSRL99]. The maximumlengthof thestring
is 255 charactersincludingthe carriage-return/neline. Ver-

sion stringscontainonly printable charactersnot including
spaceor “-".

Currently the SSHprotocolversionis either“1.x” or“2.x".
Thereforejt suficesfor ssh-sigto look for text “SSH-1" or
“SSH-2! atthebeginningof thefirst datapacket sentin each
directionof aconnection.

We canreplacessh-sigwith the following tcpdumpfilter
(denotedasssh-sig-filter) for very efficientdetection:

1st 4 bytes are 'SSH-" and

bytes 5 and 6 are 1’ or 2’
tep[(tep[12]>>2):4] = 0x5353482D and
(tep[((tep[12]>>2)+4):2] = Ox312E or
tep[((tep[12]>>2)+4):2] = Ox322E)

Our seconddetectionalgorithm, ssh-len usesan implicit
signaturethe pacletlength,to detectSSHsessionsAccord-
ing to the SSH specification,SSH 1.x will (in the absence
of TCPrepacletization)generateaclet payloadsizesof the
form 8k + 4, thatis, 4 morethanamultiple of 8. SSH2.x will
generatgayloadsizesof lengthat least16, andalsoa multi-
ple of the cipherblock size,whichis a multiple of 8 for all of
theciphersof whichwe areaware. Thereforefor SSH,either
mostpacletswill havelength8% + 4, or mostwill havelength
8k. Onedeviation occurswith the initial versionexchange,
which doesnot conformwith theserules.

In light of this pattern ssh-lendetectsSSHasfollows:

1. Firsttestfor aninteractive connectiorusingthe timing-
basedalgorithm(§ 3). If it is interactive, go to the next
step,otherwisestop.

2. If the proportionof pacletswith length8% + 4 or the
numberof pacletswith length8% exceedsa threshold,
classifythe connectiorasSSH.

We needo becarefulwhenchoosinghethresholdpecause
paclet retransmissiorand fragmentatiorcan sometimeslis-
tort suchcharacteristics.In our currentimplementationwe
setthethresholdo 75%.

4.2 Rlogin

Upon connectionestablishmentan Rlogin client sendsfour
NUL-terminatedstringsto the sener in the following format
[Ka9q]:

<NUL>
client-user-name<NUL>
server-user-name<NUL>
terminal-type/speed<NUL>

The sener thenreturnsa zerobyte (NUL) to indicatethat
it hasrecevedthesestringsandis now in datatransfermode.
Algorithm rlogin-sig attemptgo detectRlogin sessionsising
this neggotiationas a signature. It first appliesthe following
analysigto aconnection:

e For theflow towardstheinitiator of a connectioncheck
if thefirst byteis aNUL.

¢ For theflow sentby theinitiator, keeptestingeachbyte
until oneof thefollowing eventshappens:

- A gapin sequenc@&umberoccurs;

- four NUL's have beenseen;

- an empty string or a non-7-bit-ASCIl byte is
seenor

- the numberof byteswe examinedreaches maxi-
mumbound(128in thecurrentalgorithm).

If the above terminatesby finding four NUL's, then we
checkto seewhetherthe flow in the otherdirection begins
with anon-NUL byte,or whethemwe foundarny emptystrings
or non-7-bit-ASCll bytes. If neitherof theselasttwo hold,
thenthe connectioris classifiedasanRlogin connection.

We cancombinerlogin-sig with thefollowing tcpdumpfil-
ter, resultingin a moreefficientalgorithmrlogin-sig-filter :

last byte is 0 and data len != 0 and
data length <= 128
(tep[(ip[2:2]-((ip[0]&0x0f)<<2))-1] =
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) I= 0)
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) <= 128)

0)

Note that rlogin-sig testsfor whetherthe last byte in the
paclet is NUL, ratherthanthe first byte. This is necessary
becauseve find thatclientstendto sendtheir first NUL in its
own paclet, andthe remaindeiof the prologinformationin a
secondpaclet.

4.3 Telnet

The Telnetprotocol [PR833 includesa quite generalmech-
anismfor negotiating options[PR83H. Since most Telnet
sessiondegin with a seriesof option negotiations,we can
attemptto detectthese which have a distinct pattern,taking
oneof thefollowing four 3-byteformats:

IAC WILL option-code
IAC WON'Toption-code
IAC DOoption-code

IAC DON'T option-code

The codevaluesfor WILL, WON'T, DQ DON'T, and IAC
are251,252,253,254,and255respectrely. Notethatsome
optionshave parametersandso canbelongerthantheabore
threebytes.

telnet-sigteststhefirst two bytesof eachincomingpaclet
to seeif they matchthe beginning of any of theabove. If a
connectiondoesnt involve ary option negotiation, we clas-
sify it asa non-Telnetconnection Otherwisewe testthefol-
lowing additionalconditions:

o At least75%of thebytesare7-bit-ASCII.
o At least50%of thelinesarenotlongerthan80 bytes.

Theseaid in weedingout binarytraffic thathappendo match
theoptionpatternsabove.

We cancombinethefollowing pacletfilter with telnet-sig
to form amoreefficientalgorithm,telnet-sig-filter:

1st byte is <IAC> (0xff),

2nd byte is <251> - <254>
(tepl(tep[12]>>2):2] > Oxfffa) and
(tepl(tep[12]>>2):2] < Oxffff)

4.4 FTP

In this sectionwe look at a somevhatdifferentform of inter-
activeprotocol theusercontrolportionof theFTPfile transfer
protocol[PR8Y. FTPis arequest/replyprotocolin whichre-
guestaresentin single,usuallyshort,linesof ASCII text, and
replieshave a similar structure but canbe longerand multi-
line. SomeFTP requestsare sentin responsdo useractiv-
ity, andaccordinglyhave interactve-like timing. Othersare
generateanechanicallyoy the FTP client, andarrive closely
spaced.

Repliessentby FTPsenersstartwith astatuscode(anum-
ber),followedby any accompaying text. For aday’sworth of
FTPactiity betweerthe LawrenceBerkeley NationallLabo-
ratoryandtherestof thelnternet(7,229connections)thedis-
tribution of thecodein thefirst replyreturnedoy theseneris:
code220 (“readyfor new user”)seenb,685times;code421
(“service not available”) seen535 times; code 226 (“clos-
ing data connection”)seen? times; codes426 (“connec-
tion closed”)and200 (“commandokay”) eachseenonce;no
othercodesseen.

Of these,if we missa sener thatreturns421 we haven't
actually missedarything significant,sincethe serviceis not
available.All thatreally mattersis detecting220, thoughwe
caninclude421, too, withouttoo muchextra effort.

For FTPsenerrepliesthefourth byteis eitherablankor a
hyphenthelatterindicatinga multi-line reply. Thereforethe
ftp-sig algorithmlooksin thefirst four bytesfor either220

or 421, followedby eitherablankor ahyphenasasignature
for anFTPconnection.
We canalsocomposdtp-sig-filter :

1st three Dbytes are ’'220’,

4th byte is blank or hyphen
tep[(tep[12]>>2):4] = 0x3232302d or
tep[(tep[12]>>2):4] = 0x32323020

with asimilarfilter for 421.

Onedifficulty with this approachs that the samesort of
statuscodesareusedby the popularSMTP mail transferpro-
tocol [P083. Code220 correspondso “serviceready”and
421 to “servicenot available’ just asit doesfor FTR This
meanghatouralgorithmsfor detecting=TPbackdoorshould
work justaswell for SMTPbackdoorgwhich canactuallybe
beneficial) whichin § 5.5we explorefurther.

45 RootBackdoor

Fromoperationakxperiencewve have foundthatone particu-
lar typeof backdoolinstalledby attaclersis a Unix rootshell,
andtheconnectiorto it maynotinvolveary Telnetoptionne-
gotiation.Forthesepftenthesenerstartsby sendingapaclet
with a payloadof exactly two bytes:"#<blank>", which cor-
respondso oneof theformsof aUnix rootshellprompt. This
givesusasimplealgorithm,root-sig, which attemptgo detect
rootbackdoorsy looking for thetwo bytesin thefirst paclet
sentby thesener sideof aconnectionandthecorresponding
root-sig-filter:

look for '# ' in a packet with
exactly 2 bytes of payload
tep[(tep[12]>>2):2] = 0x2320 and
(ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) ==

which, given its conceptualsimplicity, works surprisingly
well (see§ 5.6 belaw).

4.6 Napster

Napsteris a distributed systemby which userscan share
copies of music that has been digitized in MP3 format
[NA99]. Usersrun a client thatconnectdo napster.com
senersfor purpose®f publishingthe MP3'sthatthe userhas
madeavailableto the public, andfor searchingor particular
MP3’s available elsavherein the distributed database.The
senerredirectgheclientto otherclientsthathave thedesired
MP3 available,andthe clientthenmakesa directconnection
to the sourceof the MP3, bypassinghe sener atthis point.
Napsterhas proven controversial becauseoften the MP3
trading is in violation of copyright laws, and also because
MP3'stendto belargefiles, sotheenthusiasnof asite’s Nap-
steruserscanconsumesonsiderableesourcegNAOO, Ha0d.
Therefore,sites malke efforts to control Napstertraffic, for
example by remaoving connectvity to the napster.com

seners. Napsterusershave taken countermeasuredo cir-
cumwent suchblocking [We0(, including configuringNap-
ster seners to use non-standardports for their commu-
nications. Open-sourceNapsterclients are also available
[GN99, ONO004g, which will aid Napsterusersin modifying
theclient's behaior to bettercircumwentdetection.

DetectingNapstertraffic is thusin mary ways similar to
detectingotherbackdoorsgventhoughin this casethetraffic
doesnotreflecta securityacceswiolation, but rathera policy
violation (authorizatiorratherthanauthentication).

We focusedntheproblemof detectinghecommunication
directly betweenNapsterclients (usedto transferthe actual
MP3's). Onethoughtwasto develop a genericMP3 detec-
tor, thoughour preliminarywork on this hasshown the prob-
lemto besomevhatdifficult, astheformathasa short,binary
headetthatdoesnot suggesa simple,distinctpatternto look
for [BoOQ].

The Napsterclient communicationhowever, hasa quite
distinctive signature[ONOOH. The communicationbegins
with the string SENDor GET followed immediatelyby the
nameof the item (no interveningwhitespace).Furthermore,
we have found thatthe SENDor GETdirective is sentby the
Napsterclient in its own packet? so our currentversionof
napstersig simply looks for either of thesestringssentin
their own paclet and occurring at the beginning of a con-
nection. napstersig-filter doesthe same,but without the
beginning-of-a-conectioncontext:

look for "SEND" or "GET" in a

packet by itself (so payload of

4 or 3 bytes, respectively)

((ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) = 4 and

tep[(tep[12]>>2):4] = 0x53454e44) or

((ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) = 3 and
tep[(tep[12]>>2):2] = 0x4745 and

tep[(tcp[12]>>2)+2]=0x54)

4.7 Gnutella

Gnutellais a distribution systemsimilar in spirit to Napster
[GNOQ]. Itsdistinctive featuresarethatit is fully opensource,
it canbe usedto exchangearbitraryfiles andnot just MP3’s
(althoughtherearenow Napsteradd-ongor doingthis, too),
andit hasno centralizedcomponent—Gnutellalients sim-
ply needto know the nameof anotherGnutellaclient and
they canparticipatdn thedistribution network. Consequently
Gnutellais likely to prove hardeffor sitesto controlthanNap-
ster

In its currentform, however, Gnutellais very easyto de-
tect. EachGnutellasessiorbegins with the connectingclient
transmitting:

2Clearly thisis very easyfor the Napsterclientto changeandthe corre-
spondingchangeo malke to our detectoiis looking for theabsencef whites-
pacefollowing thedirective, whichwill addressnistakingNapsteitGETs for
thoseusedby HTTP.

GNUTELLACONNECT.version><NL><NL>
andrecevingin reply:
GNUTELLAOK<NL><NL>

where<NL> is the newline characte(ASCII 10).
Accordingly, gnutella-sig looks for the string
“GNUTELLAbI ank>" at the beginning of a connec-
tion.
Thecorrespondingnutella-sig-filter is:

look for "GNUTELLA " as first

9 characters of payload
tep[(tep[12]>>2):4] = 0x474e5554 and
tep[(4+(tcp[12]>>2)):4] = 0x454c4cal
and tcp[8+(tcp[12]>>2)] = 0x20

5 Performanceevaluation

In this sectionwe evaluatethealgorithmsdevelopedn § 3and
§ 4. Theevaluationsveredoneby addingimplementationsf
thealgorithmsto the Bro intrusiondetectionsystemPa9§.

Our generafframenork for evaluationis asfollows. To as-
sessan algorithm’s accurag, we first run it againstknown
interactvetraffic of theparticulartypeit is supposedo detect
(Telnet,Rlogin, SSH;or, for the generalalgorithm,a combi-
nationof Telnetand Rlogin, since SSHtraffic is sometimes
bulk-transferjandanalyzehow oftenit fails to flag a connec-
tion in the traceasinteractve. This evaluatesthe false neg-
ative rate. We thenrun the algorithm againstpaclet traces
of a site’s Internettraffic (thesehave high-wolume protocols
suchasHTTPR, NFS,andX11 removed,becausetherwiseve
couldnotcapturehetraceseliably)to seewhichconnections
they markasinteractize,andthenmanuallyasseswhetherthe
connectiondoesindeedappeatrto beinteractive. This evalu-
atesthefalse positive rate.

Note,we do notassesshe NapsterandGnutelladetectors,
asthe traceswe useherewere capturedbeforethoseappli-
cationsexisted. However, our informal assessmeritasedon
correlatingtraffic to known Napsterand Gnutellaports and
serviceds thatthey work very well.

5.1 Tracedescription

We usedfour tracesto evaluatethe performancef the algo-
rithms:

e ssh.trace (194MB, 380K paclets,905connections),
ahalf-hoursnapshotf all the SSHconnectionseeriate
atnightonthelnternetaccesdink (DMZ) of the Univer-
sity of Californiaat Berkeley (UCB).

e |bnl.mix1.trace (54MB, 134K paclets,4.6K con-
nections) and Ibnl.mix2.trace (421MB, 863K
paclets, 14.7K connections). Eachtrace containsone
hour of aggreyatetraffic collectedat the DMZ of the

Lawrence Berkeley National Laboratory (LBNL), the
first in the middle of the night, the secondn the middle
of the afternoon.The traceshave hadhigh volumepro-
tocols(HTTR, SSH,NFS,X11, NNTP, FTPdata)filtered
out.

Note that we might well apply suchfiltering for opera-
tional use,too, decidingto tradeoff missingbackdoors
onthoseportsfor thereducedpaclet captureoad.

e |bnlinter.trace (389MB, 3.5M paclets, 5.5K
connections)pneday’s worth of TelnetandRlogin traf-
fic collectedat LBNL.

5.2 Performanceof SSHalgorithms

Weranssh-sigontracessh.trace to evaluateits falseneg-
ative ratio. Clearly, ssh-sigonly workswhenthebeginningof
a connectionis present. Altogether thereare 546 complete
SSHconnectionsn ssh.trace , noneof which is missed
by ssh-sig This demonstratethatthe falsenegatie ratio of
ssh-sigis extremelylow, which is to be expectedsincethe
presencef thesignaturds requiredby the specification.

We then ran ssh-sig on Ibnl.mix1l.trace ,
Ibnl.mix2.trace and Ibnlinter.trace to
evaluateits falsepositive ratio. Amongthe 16,938complete
non-SSH connections,none is mis-classifiedas SSH by
ssh-sig Thereforethe falsepositive ratio of ssh-sigis close
to 0.

ssh-sig-filter has exactly the samegood performanceon
the traceswe have, which is not surprising,asthe only ap-
parentopportunityfor erroris unusualpacletizationsplitting
the SSHversiontext acrosamultiple paclets. In addition,the
filtering gainis tremendousbecausenly thosepacletsthat
containthe SSHversionstring needto be further processed.
For ssh.trace , thealgorithmneedsonly inspect111 KB
of pacletsratherthanthe 194 MB presenin theentiretrace.

The major limitation of ssh-sigand ssh-sig-filter is that
they only work whenthe beginning of an SSHconnections
present.

SinceSSHcanbe usedfor bothinteractive traffic andbulk
transfer it is difficult to soundlyevaluatethe false negative
ratio of ssh-len which is designedo detectinteractive SSH
backdoors.Consequentlywe only evaluatethefalsepositive
ratio here.

Again, we ranssh-lenon the threetraceswithout sshcon-
nections:lbnl.mix1.trace , Ibnl.mix2.trace and
Ibnl.inter.trace . Among the 16,938non-SSHcon-
nections,only 5 are classifiedas SSHby ssh-len yielding a
very low falsepositive rate.

Comparedvith ssh-sigandssh-sig-filter, ssh-lendoesnot
requirethe presencef the beginning of a connection.How-
ever, it is lessrobust for SSH 1.x over highly lossy links,
wheretwo SSHblocksof length8% + 4 could be coalesced
dueto paclet retransmissiontesultingin a single packet of
8(k1 + k2 + 1) bytes. Consequentlywe only use ssh-len
whenthebegginningof a connectioris missing.

5.3 Performanceof Rlogin algorithms

Altogetherthereare 175 completeRlogin connectionsn the
traceshoneof whichis missedby rlogin-sig.

We begin with evaluatingthefalsepositive ratio of rlogin-
sig. In thefour tracesaltogethethereare17,306non-rlogin
connectionsnoneof whichis mis-classifie@asanRlogincon-
nection. This meansrlogin-sig also hasan extremely low
falsepositiveratio.

After addingfiltering into rlogin-sig, we found that the
false negative ratio remainsthe same(0/175). Meanwhile,
theincreasdan the falsepositive ratio is mamginal: altogether
thereare4 outof 17,306non-Rloginconnectionshataremis-
classifiedasRlogin connectiondy rlogin-sig-filter .

Thefiltering gainof rlogin-sig-filter is significant. Among
the 1 GB datawe have in the four traces,only 16 MB data
needgo beprocessetby rlogin-sig.

The major limitation of rlogin-sig andrlogin-sig-filter is
similar to ssh-sig—they only work whenthe beginning of a
connectioris seernby the monitor.

5.4 Performanceof Telnetalgorithms

Again, we first evaluatethe falsenegative ratio of algorithm
telnet-sig Unfortunately it turnsout that mary Telnetcon-
nectionsin our tracesarevery short. For suchshortconnec-
tions, telnet-sigfails becausehe connectionglo not include
optionnegotiations.Ontheotherhand,if a connectioris that
short,evenif it is indeeda backdoorit is notlikely to cause
significantdamage.

To make theevaluationmeaningfulwe only considetthose
connectionsatisfying:

o theclientsendsatleasttwo linesof data;
o thesener sendsatleastoneline of data;and
o thedurationof theconnectioris atleastl second.

After eliminatingconnectionsot satisfyingtheserequire-
ments, 1,526 Telnet connectionsremain, 18 of which are
missedby telnet-sig Furtherinspectionshowvsthat17 out of
the 18 involve the samepublic library catalogsener, which
performspasswverdlesdoginswithoutany optionnegotiation.

Wefurtherfind thatof the12,708non-Telnetconnectiongn
the traces,noneis mis-classifiedas TelnetconnectionsThis
demonstratethattelnet-sighasaverylow falsepositiveratio.

After adding filtering into telnet-sig to form algorithm
telnet-sig-filter, thefalsepositive andfalsenegativeratiosare
unafectedfor the traceswe have studied. Thefiltering gain,
however, is significant: telnet-sig-filter hasto procesdess
than1.5MB outof over1 GB of pacletdata.

The major limitation of telnet-sig and telnet-sig-filter is
similar to ssh-sigandrlogin-sig—they only work whenthe
connectionas seenby the monitor includesoption negotia-
tions,whichtendsto only occurat the beginningof aconnec-
tion.

5.5 Performanceof FTP algorithms

As notedin § 4.4,our FTPdetectioralgorithmwill alsodetect
SMTR so herewe notethis limitation andthentreatthe two
protocolstogether

We have altogetheb,629FTP/SMTPsessionin whichthe
sener sentat least4 bytesof data. Of these,29 are missed
by ftp-sig. Furtherinspectionshows that theseconnections
arealmostall partial connectiongor which the initial dialog
(whichis farandaway the mostlik ely placefor our signature
totrigger)is missing.This demonstratethatftp-sig hasalow
falsenegativeratio.

Among 20,135n0on-FTP/SMTPconnectionsonly one is
classifiedasFTP/SMTP Furtherinspectionshavs thatthisis
actuallyan FTP sener runningvia WinSock—sathereis no
falsepositive afterall!

After addindfiltering, ftp-sig-filter enjoys the sameaccu-
ragy, aswell asa terrific filtering gain: only 1.2 MB out of
over1 GB dataneedbe processetby ftp-sig-filter .

Again, the limitation for ftp-sig and ftp-sig-filter is that,
exceptfor rareexceptionsthey only work whenthebeginning
of aconnectioris seerby the monitor.

5.6 Rootshellalgorithms

As faraswe cantell, ourtracesdonotincludeary rootshells,
so we cannotsoundly evaluatethe performanceof root-sig
androot-sig-filter. But seethe next sectionfor preliminary
experiencesndicatingthatthey (root-sig-filter, in particular)
arequite powerful.

5.7 Performance of the generaldetectionalgo-
rithm

To assesshe falsenegative ratio of the algorithm,we ranit
ontracelbnl.inter.trace , which consistsonly of Tel-
netandRlogin connectionsAmongthe 150completeRlogin
connections26 aremissedby the algorithm. Furtherinspec-
tion shavs that 23 are excessvely short(lessthan2 seconds
in duration,or only onecommandexecuted) andthe other3
areuserlogin failures. Amongall 1,450 Telnetconnections
that are not excessiely short, 22 are missedby the timing-
basedalgorithm. Therefore thefalsenegative ratio is at least
comparabldo telnet-sig Furtherinspectionshaws that the
algorithmfoundall 18 connectionsnissedby thetelnet-sig,
but 22 connectiongetectedby telnet-sig are missedby the
timing-basedlgorithm.

To evaluate the false positve ratio of the algo-
rithm, we ran the algorithm on Ibnl.mix1.trace and
Ibnl.mix2.trace with all the Telnet/Rlogin/FTP/SSH/
SMTP connectiondfiltered out. Among over 12,000 con-
nections the timing-basedalgorithmreported57 backdoors.
Furtherinspectionshovs that 45 are IMAP [Cr94] and POP
[MR96] mail senersusedinteractvely, andthereforearenot
in factfalsepositives?

3Thealgorithmhasalsodetectednteractve SMTP sessionspominallya

5.8 Experiencewith production use

We only recentlybegun operationadeploymentof the back-
door detectionalgorithmsfor productionuse on the LBNL
DMZ. Oneof themostsurprising(and,in retrospectpbvious)
findingshasheenthelarge numberof legitimatebackdoors.

For example whenanalyzing20 minutesof traffic from the
UCB DMZ (comprising4.9 GB of dataafterfiltering out the
high volume traffic), the protocol-specificalgorithmsreport
334 backdooron non-standarghorts. Of these 326 are FTP
senersonnon-standarg@orts,?7 areinteractve gamesandthe
remainingoneis alibrary cardcatalogsener. In contrastthe
timing-basedalgorithmreports220 backdoors.From visual
inspectionof 75 of thesewe found: 17 areinteractve AOL
sessions]9 areinteractve games,14 arechatsessions3 are
cardcatalogseners,7 areFTP sessionsandwe wereunable
to identify the other15.

Runningonthelive traffic streamthe SSHdetectiomalgo-
rithmshave turnedup SSHsenersrunningon port 80 (homi-
nally HTTP—thesenerranonthatportto provide tunneling
throughfirewalls); port 110 (nominally POP); port 32 (used
to run an older versionof SSHthanthe oneon port 22, due
to compatibilityproblems)ports44320-44327aNAT sener
with SSHaccesso thecollectionof hostsbehindit viaanum-
berof differentports);aswell asa hostof variantsof 22 (222,
922,2222,...).

For productionuseit is unsaféeto filter out the high-volume
protocols. Runningthe signature-basettpdumpfilters on
full traffic streamsdoesnot presentary performanceprob-
lems when using a kernel-basegaclet filter, as the filters
are highly selectve. For the other protocol-specificdetec-
tors,it appearsve canalsorunthemon good-sizedull traffic
streamsasrunning all of themagainsta 10 GB traceonly
takesabout20 CPUminuteson a400MHz Pentiumll.

We run all of the protocol-specificddetectorsdaily against
tracesof LBNL traffic otherthanthe high-wolumeports. (We
will shortly be configuringour monitor to run themin real-
time.) We currently run with a setof five filters to remove
legitimate backdoors:the NAT front-end mentionedabove;
two hoststhat run a documentupload servicethat triggers
ftp-sig (theprotocolis not FTP or SMTPR but hasa simi-
lar structure);a hostthatrunsa serviceon TCP port 497 that
involvesanexchangehatlookslik e Telnetoptionnegotiation
(but isn’t); anda popularFTP sener that sometimessenes
fileswith binarydatathatlookslike embeddedelnetoptions.

TheNapsteandGnutelladetectordiave becomeémportant
toolsin enforcingLBNL's appropriataisepolicy, and,for ex-
ample have detectech remoteNapstersener runningon port
21 (FTP)in anapparentattemptto hide or circumventa fire-
wall.

Therootbackdooffilter, root-sig-filter, hasuncoveredroot
backdoorgunningon UCB traffic. However, thesehave not
beenin the form originally intended(in which the connec-
tion beginsdirectly with “#<blank>"), which we know from
experienceare a rare, albeit striking, signature.Instead,be-

non-interactie protocol.

10

causethe filter versionof the algorithm detects‘#<blank>"

anywhere in a connection,providing it is sentasa prompt
(by itself with no newline), root-sig-filter is quite powerful at
detectingboth sometransitionsto root via the Unix su com-
mand,andsessiongor which the promptseenafterthelogin
prologis indeed"#<blank>".

Part of the appeabf root-sig-filter is thatit generatesery
few candidateeonnectionssoeventhoughits falsehit rateon
generaltraffic is fairly high, the connectionst flagsare not
burdensomeéo check,andit is an exceptionallycheapalgo-
rithm in termsof computation.

We do not yet run the generalalgorithmoperationally As
discussediborve, it detectslarge numbersof interactve ser
vices, requiring time-consumingeffort contactingthe man-
agersfor the variousmachinego determinethatin factthe
backdoorsare legitimate. But the potentialof the approach
seemglearalready

6 Summary

The problemof finding a backdoorconnectionin a flood of
otherwisdegitimatenetwork traffic initially appearsiaunting.
But becausénteractie traffic hascharacteristicgjuite differ-
ent from most machine-drren traffic (smallerpaclet sizes,
longeridle periods),it is possibleto searchefficiently for
suchtraffic. We have presentec generaklgorithmfor doing
so, andalsoprotocol-specifialgorithmsthatlook for signa-
turesparticularto differentprotocols,both of which we im-
plementedn the Bro intrusiondetectionsystem.

Oneunexpectedbenefitof developingthe protocol-specific
algorithmswasto realizehow it is frequentlypossibleto fin-
gerprinta particularapplicationprotocolby uniqueor nearly
uniquetext it includes.This leadto the developemenbf suc-
cessfulalgorithmsfor Napsterand Gnutella, which can be
importantto detectgiventhattheir usesometimesiolatesa
site’s policy, andthattheir usersoftenattemptto evadedetec-
tion.

The algorithmsare frequentlyamenableo prefilteringin
which a statelespacletfilter discardsearlyall of thetraffic
streambeforeit is evenconsideredy thealgorithm.Suchfil-
teringyieldsmajorperformancéncreasei termsof reduced
CPU processingfor little or sometimesio decreasén accu-
ragy. A relatedline of future work thatmay prove fruitful is
to explorethe possibility of combiningthe generalalgorithm
with the protocol-specifialgorithms whichis likely to yield
betteraccuray.

While the algorithmswork very well, a major stumbling
block we failedto anticipates thelarge numberof legitimate
“backdoors”that usersroutinely access.Thesearenot back-
doorsin the surreptitioussenseput only in themoregeneral
senseof standardprotocolsbeingrun on non-standargborts.
We have recentlybegun using the algorithmsoperationally
which will necessitatboththe developmentof refinedsecu-
rity policiesaddressinghe mary legitimate backdoorsand
honingour algorithmsasa mechanistiavay to eliminatecer

tain classeof benignbackdoors.But even giventhesehur-
dles,we find the utility of the detectionalgorithmsclearand
compelling,anda naturalnext stepis to now investigatetheir
applicationto detectingcustombackdoorprotocolssuchas
LOKI [da97 andBackOrifice [CERT98].

7 Acknowledgments

We would like to thank Ken Lindahl and Cliff Frost for
their greatlyappreciatedhelpwith gainingresearctaccesso
UCB'straffic, andTaraWhalenandtheanorymousreviewers
for theirfeedbackon thework andits presentation.

References

[Bo90] D. Borman,“TelnetLinemodeOption; RFC 1184,
Network Information Center SRI International, Menlo
Park, CA, Oct.1990.

[Bo00] G. Bouvigne, “MPEG Audio Layer I/1I/ll
frame headef http://wwwmp3-tech.og/programner/
frameheadehtml, 2000.

[CERT98] CERT Vulnerability Note VN-98.07, http://www.
cert.og/vul_notes/VN-98.07.baakifice.html,Oct 1998.

[Cr94] M. Crispin,“InternetMessageéiccessProtocol- Ver-
sion 4" RFC 1730, Network Information Center DDN
Network InformationCenter Dec.1994.

[da97] daemon9oute@infonexus.com , “LOKI2 (the
implementation), Phrack Magazine, 7(51),Sep.01,1997.
http://wwwinfowar.com/iwftp/phrackPhrack51/P5%
06.txt.

[DIJCME92] P. Danzig,S. Jamin,R. CacerespP. Mitzel, and
D. Estrin, “An Empirical Workload Model for Driving
Wide-areaTCP/IP Network Simulations, Internetwork-
ing: Research and Experience, 3(1), pp.1-26,1992.

[GI93] V. Gligor, “A Guideto UnderstandingCovert Chan-
nel Analysis of Trusted Systems, NCSC-TG-030,ver
sion 1, http://wwwradium.ncsc.mil/tpep/lib-rgfrainbow/
NCSC-TG-030.htmINational ComputerSecurityCenter
Nov. 1993.

[GN99] Gnapster
gnapstehtml, 1999.

http://wwwfaradic.nefasta/

[GNOQO] Gnutellahttp://gnutella.wgo.com,2000.

[Ha00] J. Harrow, “The Consumerinternet Steamrollef
The Rapidly Changing Face of Computing, http://www.
compag.com/rcfoc/20@3117.html#_Toc480185377,
April, 2000.

[JLM91] V. JacobsorC. Leres,andS.McCanne;tcpdump’
ftp://ftp.ee.Ibl.gew/tcpdumptarZ, 1991.

11

[Ka91] B. Kantor, “BSD Rlogin; RFC 1282, Network In-
formation Center SRI International, Menlo Park, CA,
Dec.1991.

[LWWWG98] R. Lippmann, D. Wyschogrod,S. Webstey
D. Weber and S. Gorton, “Using Bottleneck Verifi-
cation to Find Novel New Attacks with a Low False
Alarm Rate; Proc. RecentAdvancesin Intrusion De-
tection, Sept. 1998; http://www.zurich.ibm.coni/ dac/
Prog RAID98/Talks.html#LippmanrP1 .

[MR96] J.MyersandM. Rose,“Post Office Protocol- Ver
sion 3, RFC 1939, Network Information Center DDN
Network InformationCenter May 1996.

[NA99] Napsterhttp://www.napstecom,1999.

[NAOO] Napster (Press Room), http://wwwnapstecom/
press.html2000.

[ONOOb] “Napster protocol specificatiorf, http://opennap.
sourcefoge.net/napstext, June2000.

[ONOOa] OpenNaphttp://opennap.sourcefge.ret,2000.

[PF95] V. Paxsonand S. Floyd, “Wide-Area Traffic: The
Failureof PoissorModeling; |IEEE/ACM Transactions on
Networking, 3(3), pp. 226-244,Junel995.

[Pa98] V. Paxson,'Bro: A Systenfor DetectingNetwork In-
trudersin Real-Time; Proc. USENIX Security Symposium,
Jan.1998.

[Po82] J. Postel,'Simple Mail TransferProtocol, RFC821,
Network Information Center SRI International, Menlo
Park,CA, Aug. 1982.

[PR834a] J. PostelandJ. Reynolds,“TelnetProtocolSpecifi-
cation]} RFC854,Network InformationCenter SRl Inter-
national,Menlo Park, CA, May 1983.

[PR83Db] J. PostelandJ. Reynolds,“TelnetOption Specifica-
tions! RFC 855, Network InformationCenter SRI Inter-
national,Menlo Park, CA, May 1983.

[PR85] J. Posteland J. Reynolds, “File TransferProtocol
(FTP); RFC959,Network InformationCenter SRI Inter-
national,Menlo Park, CA, Oct. 1985.

[PN98] T. PtacekandT. Newsham,“Insertion, Evasion,and
Denial of Service:Eluding Network IntrusionDetectior,
SecureNetworks, Inc., http://www.aciri.omg/vern/Ptacek
Newsham-Ewasion-98.psjan.1998.

[Ra00] M. Ranum.“RE: Bypassingfirewall,” mailing list
firewall-wizards@nfmet,Feh 1, 2000.

[We00] D. Weekly, “How to getarounda Napsteiblockade,
http://david.weeklyorg/code/nasterproxy.php3,2000.

[YKSRL99] T. Ylonen, T. Kivinen, M. Saarinen,T. Rinne,
andS. Lehtinen,"SSH Transport_ayer Protocol; Internet
Draft, draft-ietf-secsh-transport-07.tkflay 2000.

