
NEXT GENERATION SECURITY TECHNOLOGIES
http://www.ngsec.com

NGSEC® White Paper
Release date: 01/21/2002 Page 1 of 6

Polymorphic Shellcodes vs. Application IDSs

1. Introduction.

2. Shellcode types and recognition techniques.

3. Intrusion Detection Systems.

4. NGSecureWeb.

5. References.

6. Credits.

NEXT GENERATION SECURITY TECHNOLOGIES
http://www.ngsec.com

NGSEC® White Paper
Release date: 01/21/2002 Page 2 of 6

1. Introduction.

This document focuses on how IDS, under certain circumstances, can detect
Polymorphic shellcodes.

We will go through the three main parts of a polymorphic shellcode and analyze IDS
common problems to detect them.

2. Shellcode types and recognition techniques.

We will discuss shellcodes referring to IA32 platforms.

Please note that all these techniques can be implemented on other platforms such
as SPARC, HPPA, MIPS, etc.

Before polymorphic appeared, regular shellcodes had two well-defined sections:

• NOP section: This is the section where the program will jump when a common

buffer overflow is successfully exploited.
It is just a huge amount of NOP instructions.

• Shellcode payload: This is the section where gets executed /bin/sh, binds a
shell to a TCP port, etc.

These shellcodes are very easy to detect. On the past years it was very common to
use 0x90 instructions (nop) on IA32 platforms in the NOP section. So IDS just
searched for an X amount of 0x90s and triggered a shellcode alarm. Also, some IDS
have signatures (such as /bin/sh) to detect the shellcode payload.

When polymorphic shellcodes appeared these techniques became obsolete.

Polymorphic shellcodes have three well-defined sections:

• NOP section: This section now is a random mix of no-effect instructions such as

inc %eax, inc %ebx, pop %eax, nop, dec %eax, …
• Decrypter engine: This section contains an engine to decrypt the shellcode

payload. This engine is not the same from one shellcode to another, it varies
randomly using some virii polymorphic techniques. The cipher used normally is a
xor mechanism or a double xor mechanism, it could be implemented a better
ciphering mechanism such as RJINDAEL, but shellcode would grow in some
thousands of bytes and would not be useful anymore in many buffer overflow
exploitations.

• Encrypted shellcode payload: This section has the original shellcode
encrypted.

NEXT GENERATION SECURITY TECHNOLOGIES
http://www.ngsec.com

NGSEC® White Paper
Release date: 01/21/2002 Page 3 of 6

This kind of shellcode is harder, though not impossible to detect.

There has been some discussion on how to detect such shellcodes:

• Shellcode payload decrypt and detection with old shellcode payload

signatures: This technique, used by antivirus to detect viral code, can be an
approached to detect these shellcodes.
But it has some open issues:

o How do you detect it is an encrypted shellcode payload?
o Which cipher mechanism uses?
o Which key(s) are used in the cipher mechanism?
o Can it be brute-forced in low time?

• Signatures to detect the decrypter engine: This technique could be a
better approach, but has some problems too:

o Since decrypter engine mutates and too many instructions are

involved, IDS would have to check too many signatures (mask).
o Lots of false positives.
o Too many CPU cycles and time needed.

• Decrypter engine emulation: IDS is emulating the code so if it finds code
that seems to decrypt something in memory it raises a shellcode alarm. This
technique raises low number of false positives but has a strong weakness:

o Too many CPU cycles and time needed.

• NOPS section detection: INMHO this is the best technique, it just tries to
detect a NOP_NUMBER number of no-effect instructions.

It has some issues such as many false positive, but if you set NOP_NUMBER
to a range between 50-60, recognizes almost every shellcode. Weaknesses:

o Lots of CPU cycles.
o False positive when NOP_NUMBER is low.
o Since some non-effect instructions have ascii representation, some

character strings such as AAAAA…60times…A, would be recognized as
shellcodes.

NEXT GENERATION SECURITY TECHNOLOGIES
http://www.ngsec.com

NGSEC® White Paper
Release date: 01/21/2002 Page 4 of 6

It is very important to set NOP_NUMBER to a reasonable value in order to
avoid too many false positives.

Throughout NGSEC’s benchmark test we found that a number ranging 50-60
was a good value to detect shellcodes without too many false positives.

You can grab a free simple Network IDS that implements this technique at:

http://www.ngsec.com/downloads/misc/NIDSfindshellcode.tgz

3. Intrusion Detection Systems:

There are mainly three types of Intrusion Detection Systems:

• Network IDS: This type of IDS grabs datagrams from a network interface
and looks for attack patterns in them (such as port scanning, cgi exploitation,
etc).

• Host IDS: This type of IDS looks for patterns in local user actions; e.g. if a
user is trying to view such file as /root/.rhosts, this action could clearly be
identified as an attack pattern.

• Application IDS: This type of IDS has recently appeared. It just looks for
attack patterns to all the input data that comes to the application.

Implementing the NOPS section detection on these types of IDS has, as
usual, open issues:

• Network IDS: Since it has to grab as many datagrams as it can, it can’t

waste too much time looking at every packet, because it could drop too many
datagrams while looking for NOPS. This would cause a big decrease on IDS
performance.

• Host IDS: This technique can be implemented with these type of IDS’s, but
there are better ways of “buffer overflow exploitation” detection, since you
can watch the flow of the program and see when return pointer is changed.

• Application IDS: This is the best kind of IDS to implement this technique.
Since all input data is checked, no drop of data is possible, and normally not
many data is checked (low CPU and time to check) you can recognize almost
all polymorphic shellcodes at input data. You have to set the NOP_NUMBER
to a value that fits better with your protocol, and normal data input.

NEXT GENERATION SECURITY TECHNOLOGIES
http://www.ngsec.com

NGSEC® White Paper
Release date: 01/21/2002 Page 5 of 6

4. NGSecureWeb®:

The NOP detection technique was successfully implemented in NGSecureWeb®:
An Application IDS and firewall for Web Servers.

“NGSecureWeb®” is the result of the fusion of two security technologies:
Firewalls and IDSs.

NGSW filters all traffic from client to the web-server, looking for well-known attacks
to web-servers and to its third party applications. When NGSW detects a possible
attack (acts as an Application IDS), it will refuse to forward it to the web server
(acts as an Application Firewall).

NGSW will protect your system from both known and unknown vulnerabilities,
since its IDS engine looks for patterns of well-known attacks. Future security
flaws in this web-server and its applications will not be exploitable.

Currently NGSW IDS engine checks for the following patterns:

• Directory traversal attacks: During the past few years many CGI applications
have suffered this kind of vulnerabilities, especially the ones involved in file
managing. NGSW Firewall engine will protect both for known and unknown
vulnerabilities.

• Forbidden Words: NGSW will search the entire request for “forbidden
words” (defined by the Administrator). For example, it isn’t common to find the
word "/bin/sh" in an HTTP request. NGSW IDS engine detects these words and
NGSW Firewall engine blocks the request to the web-server.

• Shellcode: NGSW IDS engine uses the newest techniques in shellcode
recognition (even polymorphic ones).

• Long Headers (buffer overflows): NGSW IDS engine will check the length of
all HTTP headers looking for unusual values.

• Long GET (buffer overflows): NGSW IDS engine will check the length of the
GET arguments looking for unusual high values. These high values could be due
of buffer overflow exploitation.

• Long POST (buffer overflows): NGSW IDS engine will check the length of the
URL arguments looking for unusual high values. These high values could be due
of buffer overflow exploitation.

• Long URL (buffer overflows): NGSW IDS engine will check the length of the
URL looking for unusual high values. These high values could be due of buffer
overflow exploitation.

Current version is 1.00. Please direct any enquiries to ngsw@ngsec.com

NEXT GENERATION SECURITY TECHNOLOGIES
http://www.ngsec.com

NGSEC® White Paper
Release date: 01/21/2002 Page 6 of 6

5. References:

[1] NGSecureWeb® at http://www.ngsec.com
[2] ADM mutate at http://www.ktwo.ca/security.html
[3] Focus-IDS at http://www.securityfocus.com/

6. Credits:

This document was brought to you by:

Fermín J. Serna <<<< fjserna@ngsec.com >>>>
Chief Technology Officer
Next Generation Security Technologies
http://www.ngsec.com

NGSEC Research Team <<<< labs@ngsec.com >>>>
