Remote SMTP Server Detection

Julien Bordet <zejamesQgreyhats.org>

September 4, 2002

Abstract

While doing penetration tests, first one must retrieve as much in-
formation about remote server as he can. Some existing tools are very
useful for that purpose, allowing for exemple to detect which Oper-
ating System is used thanks to network stack reaction. Some others
operate at the application level : they detect remote software version
through the way it responds to special requests.

This article introduces smtpscan, a new detection tool written to
allow remote detection of SMTP servers.

1 Introduction

Since the introduction of Fyodor’s
NMAP! and its fingerprints 2, lots of
technics to remotly gather informa-
tion about remote servers have been
used. Simple banners reading, TCP
or ICMP answers analysis are very

useful. Once OS version has been de-
tected, one often wish to know which
sofware version is used. Again, the
easier and most common way to do
it is to read the corresponding ban-
ner :

[julien@lysis smtpscan] nc mail.test.com 25
220 mail.test.com ESMTP Sendmail 8.10.1/8.10.1; Sun, 1 Sep 2002

But this method is not very re-
liable : lots of remote servers al-
lows administrators to configure and
modify banners. Another way must
be found.

In fact, the same method as
nmap’s fingerprinting can be used
here : by sending requests that do

not exactly correspond to protocols’
standarts, by using weird or rare op-
tions, one must get a ’software fin-
gerprint’ that may help to identify
which software is used. That is ex-
actly what smtpscan does for SMTP
servers.

2 Fingerprinting methodology

SMTP server behaviour is defined by
several RFCs. The most relevant are
RFCs 821 (SIMPLE MAIL TRANS-
FER PROTOCOL), 1425 (SMTP
Service Extension) and 1985 (SMTP
Service Extension for Remote Mes-
sage Queue Starting). Standart
states commands that can be used
by a SMTP client, mandatory fea-
tures that must be implemented by
all SMTP servers, valid arguments
and data that can be understood.
But as usual, implementation

Thttp://www.insecure.org/nmap
2Remote 0S detection

via

do not exactly correspond to what
RFCs say. That little differences are
used by smtpscan.

Of course, error messages could
also be used (for exemple and Send-

mail does not say 'Hello’ as a Postfix
does). But

e they can be personnalized on
serveral servers, so they are
much less reliable,

e using error code is enough :)
Stack

TCP/IP FingerPrinting,

http://www.insecure.org/nmap/nmap-fingerprinting-article.html

14:30:02 +02

The tests currently used by smtp-
scan are the following :

Send a valid MAIL FROM
without saying HELO
first : some servers allow
clients to do it, and answer
with a 220 error code, some
other don’t (and refuse it with
a 501 or 503).

Send a HELO without a
domain name after it : from
the RFCs, this is not manda-
tory, but some servers accepts
it and some don’t

Use a MAIL FROM test
without a ’’ between
FROM and test : this is
explicitely required, but some
MTA, like gmail, accept a
MAIL FROM without ’:".

Use a MAIL FROM: <>
with an empty from ad-
dress : any servers should ac-
cept this, but there are always
exceptions

Use a MAIL FROM spec-
ifying the source address
without closing bracket
’>’ . this is normally not
valid, but some servers accept
it (because some clients may
use it...)

Use a invalid source ad-
dress : Some servers check for
a valid domain name in the
source address

e Use a simple ’test’ recipi-
ent : This normaly refers to a
local user, but may not be al-
lowed by some MTAs.

e Use the HELP command :
may or may not be imple-
mented

e Use the VRFY command :
may or may not be imple-
mented

e Use the EXPN command :
may or may not be imple-
mented

e Use the TURN command :
may or may not be imple-
mented

e Use the SOML command :
may or may not be imple-
mented

e Use the SAML command :
may or may not be imple-
mented

e Use the NOOP command :
may or may not be imple-
mented

e Use the EHLO command :
may or may not be imple-
mented

This set of tests proves to be
a good way of guessing the remote
server type.

3 smtpscan implementation

smtpscan is a Perl implementation of
this method. It consists of approxi-
matively 260 lines of code.

It is divided into three parts :

e the test file, that contains
the commands that must be
passed to the remote server.
They are described above.

e the fingerprint file, that con-
tains data about know SMTP
servers.

e the script itself, called smtp-
scan, that loads tests from test
file, and applies it to the re-
mote server. Then it compares
the fingerprints it got with the
fingerprints contained in the
database. If there is not ex-
act match, it prints the near-

Sendmail 8.12.2:250:501:501:250:553:553:550:214:250:250:502:502:502:250:250
Exim 3.12:250:501:500:250:501:250:501:214:250:550:500:500:500:250:250

So far the database contains 77
different fingerprints. But user re-

4 Conclusion

The smtpscan implementation for
the method presented here has
proven so far to be vey efficient.
Indeed, no ’collision’ has yet been
found : different servers have always
given different fingerprints (that is,
of course, not true for subversions,
that can however often be deter-
mined). Consequently, it may really

est matches (counting the dif-
ferences)

As usual with fingerprints, the
database can be completed with
untested servers, and may evolve in
the futur. Moreover, the number of
tests could easily increase if needed,
if for instance there are too many
‘collision’ (same fingerprint with dif-
ferent servers). Indeed tests as well
as fingerprints are completely dy-
namic and not hardcoded in the pro-
gram.

The fingerprint database consists
in one line per fingerprint. The
first field is used to described remote
server versions, and remaining fields
correspond to the fingerprint itself,
that it error codes answered to our
test requests . For exemple :

port would be very helpful to in-
crease it.

useful while doing penetration tests.

It may be noticed that, of course,
every ’'rich’ (that is with numerous
text commands and numerous spec-
ifications) existing or futur protocol
could be applied the same method,
and maybe with a few modification
with smtpscan itself.

5 Greetings

e Fyodor for its great nmap tool, idea of writting smtpscan
and its fingerprinting imple-)
mentation e Tomat (tomat@bigbuffer.org)

for re-reading this document

)) and his precious advices
e Jedi/Sector Onme for its tool

Ftpmap, that has given my the e Gwen forever

