
 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

 
 
 
 

Analysis of Remote Active Operating System 
Fingerprinting Tools 

 
 
 

Ryan Spangler 
University of Wisconsin - Whitewater 

Department of Computer Science 
ryan@packetwatch.net 

 
 
 
 
 
 
 
 

May 2003 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
There are many tools today that are used for remote active operating system fingerprinting. They all 
have their own fingerprinting techniques. This paper gives an in-depth analysis of three such tools: 
Nmap, RINGv2, and Xprobe2. The purpose of the paper is to show how these tools work, and to 
understand the advantages and disadvantages they each offer. 
 



i 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

Table of Contents 
 
 
1.0 Introduction..............................................................................................................................................................1 
2.0 Nmap Tool...............................................................................................................................................................2 

2.1 Technique ............................................................................................................................................................2 
2.2 OS Signature .......................................................................................................................................................3 
2.3 Advantages ..........................................................................................................................................................5 
2.4 Usage Example...................................................................................................................................................6 
2.5 Defenses.............................................................................................................................................................11 

3.0 RINGv2 Tool.........................................................................................................................................................12 
3.1 SYN_RCVD Method .....................................................................................................................................12 

3.1.1 Technique..................................................................................................................................................12 
3.1.2 OS Signature.............................................................................................................................................13 
3.1.3 Advantages................................................................................................................................................13 
3.1.4 Usage Example........................................................................................................................................13 
3.1.5 Defenses ....................................................................................................................................................15 

3.2 LAST_ACK Method......................................................................................................................................16 
3.2.1 Technique..................................................................................................................................................16 
3.2.2 OS Signature.............................................................................................................................................17 
3.2.3 Advantages................................................................................................................................................17 
3.2.4 Usage Example........................................................................................................................................18 
3.2.5 Defenses ....................................................................................................................................................20 

3.3 FIN_WAIT_1 Method..................................................................................................................................21 
3.3.1 Technique..................................................................................................................................................21 
3.3.2 Advantages................................................................................................................................................22 

4.0 Xprobe2 Tool.........................................................................................................................................................23 
4.1 Technique ..........................................................................................................................................................23 
4.2 OS Signature .....................................................................................................................................................24 
4.3 Advantages ........................................................................................................................................................27 
4.4 Usage Example.................................................................................................................................................27 
4.5 Defenses.............................................................................................................................................................31 

5.0 Conclusion ..............................................................................................................................................................32 
6.0 References ...............................................................................................................................................................33 
7.0 Acknowledgements...............................................................................................................................................34 



1 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

1.0 Introduction 
Remote active operating system fingerprinting is the process of determining the identity of a remote 
host’s operating system. This is done by actively sending packets to the remote host and analyzing 
the responses. Tools like Nmap and Xprobe2 take the responses and form a fingerprint that can be 
queried against a signature database of known operating systems. 
  
Learning which operating system is running on a remote host can be very valuable for both pen-
testers and black-hats. It’s valuable because when vulnerabilities are found they are normally 
dependent on the OS version. 
 
Originally, determining the OS on the remote host was done by a technique known as “banner 
grabbing”. Banner grabbing consists of either looking at the banner displayed when trying to connect 
to a service like ftp or by downloading a binary file like /bin/ls to determine what architecture it was 
built for. 
 
Eventually, more advanced techniques based on stack querying came about. Stack querying means to 
actively send packets to the network stack on the remote host and analyze the responses. This idea 
takes advantage of each OS vendor’s network stack implementation. The first method to use stack 
querying was aimed at the TCP stack. It involves sending standard and non-standard TCP packets to 
the remote host and analyzing the responses. The next method was known as ISN (Initial Sequence 
Number) analysis1. This identifies the differences in the random number generators found in the 
TCP stack. Up until that point all of the stack querying methods were found by looking at the TCP 
protocol. Later the same year, researchers found a new method that used the ICMP protocol. The 
method is known as ICMP response analysis. It involves sending ICMP messages to the remote host 
and analyzing the responses. The newest method is called temporal response analysis. Like others 
this method uses the TCP protocol. Temporal response analysis looks at the retransmission timeout 
(RTO) responses from a remote host.  
 
This paper presents an in-depth analysis of three remote active OS fingerprinting tools. I will be 
explaining how each of the different OS detection methods work in order to identify the OS running 
on the remote host. The goal of the paper is to show how the tools work, and to understand the 
advantages and disadvantages they each offer. 

                                                 
1 A more in depth explanation of ISN analysis can be found at http://lcamtuf.coredump.cx/newtcp/. 



2 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

2.0 Nmap Tool 
Nmap is a network exploration tool and security scanner. It is designed to allow users to scan 
networks to determine which hosts are up and what services they offer. Nmap supports a number of 
scanning techniques that use the following protocols: TCP, ICMP, UDP, and IP. Nmap also includes 
features like remote OS detection, parallel scanning, port filtering detection, timing options, and 
flexible target and port specification. 
 
For the purpose of this paper I’ll be focusing on the remote OS detection method that Nmap uses. I’ll 
be using Nmap version 3.27 since it was the current version at the time of this writing. 
 
 

2.1 Technique 
Before Nmap runs it’s OS detection method it runs a port scan against the target machine. It performs 
a port scan so it can find some open and closed ports on the target machine.  Nmap works best w hen 
it finds at least one open TCP port, one closed TCP port, and one closed UDP port. Nmap works by 
conducting a set of tests against the target machine to try to determine what OS it is running. 
 
The first test is named T1 for test 1. In this test a TCP packet with the SYN, and ECN-Echo flags 
enabled is sent to an open TCP port. 
 
The second test is named T2 for test 2. It involves sending a TCP packet with no flags enabled to an 
open TCP port.  This type of packet is known as a NULL packet. 
 
The third test is named T3 for test 3. It involves sending a TCP packet with the URG, PSH, SYN, 
and FIN flags enabled to an open TCP port. 
 
The fourth test is named T4 for test 4. It involves sending a TCP packet with the ACK flag enabled 
to an open TCP port. 
 
The fifth test is named T5 for test 5. It involves sending a TCP packet with the SYN flag enabled to 
a closed TCP port. 
 
The sixth test is named T6 for test 6. It involves sending a TCP packet with the ACK flag enabled to 
a closed TCP port. 
 
The seventh test is named T7 for test 7. It involves sending a TCP packet with the URG, PSH, and 
FIN flags enabled to a closed TCP port. 
 
The eighth test is named PU for port unreachable test. It involves sending a UDP packet to a closed 
UDP port. The goal is to elicit an ICMP packet with an ICMP port unreachable message back from 
the target machine. 
 
The last test that Nmap performs is named TSeq for TCP sequenceability test. The test tries to 
determine the sequence generation patterns of the TCP initial sequence numbers also known as TCP 
ISN sampling, the IP identification numbers also known as IPID sampling, and the TCP timestamp 
numbers. The test is performed by sending six TCP packets with the SYN flag enabled to an open 
TCP port. 
 



3 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

After Nmap has received the results from all of the tests it builds an OS fingerprint signature, then 
tries to find a match in the fingerprint database. If the signature is found in the database, Nmap will 
list it as the Remote OS guess. If the signature isn’t found in the database, Nmap will display a 
message saying “No exact matches for host”, and tells you that if you know what the OS is running 
on it to go to http://www.insecure.org/cgi-bin/nmap-submit.cgi. 
 
 

2.2 OS Signature 
Based on the results (information in the packets sent back to us) of the tests that Nmap performs, an 
OS signature is built. I will now show an example signature from the database, and then explain what 
it means. 
 
Fingerprint Solaris 9 Beta through Release on SPARC 
TSeq(Class=RI%gcd=<6%SI=<A927C&>116A%IPID=I%TS=100HZ) 
T1(DF=Y%W=C0B7|807A%ACK=S++%Flags=AS%Ops=NNTMNW) 
T2(Resp=N) 
T3(Resp=N) 
T4(DF=Y%W=0%ACK=O%Flags=R%Ops=) 
T5(DF=Y%W=0%ACK=S++%Flags=AR%Ops=) 
T6(DF=Y%W=0%ACK=O%Flags=R%Ops=) 
T7(DF=Y%W=0%ACK=S%Flags=AR%Ops=) 
PU(DF=Y%TOS=0%IPLEN=70%RIPTL=148%RID=E%RIPCK=E%UCK=E|F%ULEN=134%DAT=E) 
 
I will go through the signature line by line. 
 
Fingerprint Solaris 9 Beta through Release on SPARC 
 
This signature covers Solaris 9 for the SPARC platform from the Beta through the Release version. 
 
Figure 1 is included to show the TCP header which will be referred to in the results of some of the 
tests.  
 

 
Figure 1: TCP header 

 



4 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

TSeq(Class=RI%gcd=<6%SI=<A927C&>116A%IPID=I%TS=100HZ) 
 
This line represents the results of the TCP sequenceability test. Remember that this test tries to 
determine the generation patterns of the TCP initial sequence numbers, the IP identification 
numbers, and the TCP timestamp numbers. Class, gcd, and SI all come from TCP ISN sampling. 
Class=RI means that it falls in the “Random Increments” class which means that each new TCP 
sequence number increases in such a way that it is difficult to guess precisely from the last one. 
gcd=<6 means that the greatest common divisor is less than six, which means that the sequence 
numbers don’t have any large factors in common. SI=<A927C&>116A means that the sequence 
increments are less than 0xA927C in hexadecimal or 692860, and greater than 0x116A in 
hexadecimal or 4458. The sequence increments value is a statistical measure of variance meaning that 
the higher the number the more random looking the sequence numbers tend to be. IPID comes 
from IPID sampling. IPID=I means that the IP identification numbers fall in the “Incremental” 
class meaning they increase by one for each packet sent. TS comes from the TCP timestamp 
sampling. TS=100HZ means that the TCP timestamp option seems to increment by about 100 every 
second. 
 
T1(DF=Y%W=C0B7|807A%ACK=S++%Flags=AS%Ops=NNTMNW) 
 
This line represents the results of test 1. DF=Y means that the Don’t fragment flag in the IP header 
was enabled. W=C0B7|807A means that the window size in the TCP header is either 0xC0B7 
(49335) or 0x807A (32890) in hexadecimal. ACK=S++ means that the acknowledgment number in 
the TCP header is our initial sequence number plus 1. Flags=AS means that the ACK and SYN flags 
in the TCP header were enabled. Ops=NNTMNW means that the following options were in this 
order: <NOP><NOP><Timestamp><Maximum segment size (MSS)><NOP><Window scale>. 
 
T2(Resp=N) 
 
This line represents the results of test 2. Resp=N means that we did not get a response back. 
 
T3(Resp=N) 
 
This line represents the results of test 3. Resp=N means that we did not get a response back. 
 
T4(DF=Y%W=0%ACK=O%Flags=R%Ops=) 
 
This line represents the results of test 4. DF=Y means that the Don’t fragment flag in the IP header 
was enabled. W=0 means that the window size in the TCP header is 0. ACK=O means that the 
acknowledgment number in the TCP header is 0. Flags=R means that the RST flag in the TCP 
header was enabled. Ops= means that there weren’t any options sent back. 
 
T5(DF=Y%W=0%ACK=S++%Flags=AR%Ops=) 
 
This line represents the results of test 5. DF=Y means that the Don’t fragment flag in the IP header 
was enabled. W=0 means that the window size in the TCP header is 0. ACK=S++ means that the 
acknowledgment number in the TCP header is our initial sequence number plus 1. Flags=AR means 
that the ACK and RST flags in the TCP header were enabled. Ops= means that there weren’t any 
options sent back. 
 
T6(DF=Y%W=0%ACK=O%Flags=R%Ops=) 
 
This line represents the results of test 6. DF=Y means that the Don’t fragment flag in the IP header 
was enabled. W=0 means that the window size in the TCP header is 0. ACK=O means that the 



5 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

acknowledgment number in the TCP header is 0. Flags=R means that the RST flag in the TCP 
header was enabled. Ops= means that there weren’t any options sent back. 
 
T7(DF=Y%W=0%ACK=S%Flags=AR%Ops=) 
 
This line represents the results of test 7. DF=Y means that the Don’t fragment flag in the IP header 
was enabled. W=0 means that the window size in the TCP header is 0. ACK=S means that the 
acknowledgment number in the TCP header is our initial sequence number. Flags=AR means that 
the ACK and RST flags in the TCP header were enabled. Ops= means that there weren’t any options 
sent back. 
 
PU(DF=Y%TOS=0%IPLEN=70%RIPTL=148%RID=E%RIPCK=E%UCK=E|F%ULEN=134%DAT=E) 
 
This line represents the results of the port unreachable test. DF=Y means that the Don’t fragment 
flag in the IP header was enabled. TOS=0 means that the type of service (TOS) in the IP header was 
0. IPLEN=70 means that the total length in the IP header is 0x0070 in hexadecimal or 112. 
RIPTL=148 means that the total length given in the IP header sent back to us is 0x0148 in 
hexadecimal or 328. RID=E means that the identification number in the IP header we got back in 
the copy of our original UDP packet was the same as what we sent. RIPCK=E means that the 
header checksum in the IP header was the same. UCK=E|F means that the UDP checksum in the 
UDP header sometimes is found to be the same and sometimes not. ULEN=134 means that the 
UDP length in the UDP header is 0x0134 in hexadecimal or 308. DAT=E means that the UDP data 
was echoed back correctly. Since most implementations don’t send any UDP data back, they get 
DAT=E by default. 
 
 

2.3 Advantages 
The Nmap tool offers many advantages over other remote active OS fingerprinting tools. Here are 
some reasons users might want to utilize this tool for its OS detection method: 
 
§ “Half-open” scanning 2 is supported. The TCP SYN scan is one of these scan types. The 

advantage to this scan type is that it doesn’t complete the TCP three-way handshake which 
means that it will often not be logged by basic intrusion detection systems. 

§ The tests that Nmap performs include multiple flags and protocols so that it can still make an 
OS guess even if filtering devices block some of the tests. Some tests might not work 
because filtering devices might block protocols like ICMP from entering their network. 

§ There is a large OS signature database. For example, the latest Nmap (3.27) recognizes 867 
fingerprints while the latest Xprobe2 (0.1) recognizes 53. 

§ There is a lot of support for network devices like routers, firewalls, switches, and printers. 
§ Strict signature matching is utilized by default, while fuzzy matching can be enabled by 

specifying the undocumented --fuzzy option. 
§ It has built-in learning functions. 

 
 

                                                 
2 “Half-open” scanning is a form of port scanning where the client terminates the connection before the 
TCP three-way handshake can be completed. 



6 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

2.4 Usage Example 
The sample run was produced utilizing an OpenBSD 3.2 machine running Nmap targeting a FreeBSD 
4.7-RELEASE machine on the same local LAN. Starting here and throughout the rest of the paper 
Tcpdump 3 will be used to display the network traffic. 
 
The following is a sample run that Nmap produced: 
 
 
# nmap –sS –O –v –p 22,23 10.10.1.8 
 
Starting nmap 3.27 ( www.insecure.org/nmap/ ) at 2003-05-05 17:09 CDT 
Host mars.packetwatch.net (10.10.1.8) appears to be up ... good. 
Initiating SYN Stealth Scan against mars.packetwatch.net (10.10.1.8) at 17:09 
Adding open port 22/tcp 
The SYN Stealth Scan took 0 seconds to scan 2 ports. 
For OSScan assuming that port 22 is open and port 23 is closed and neither are 
firewalled 
Interesting ports on mars.packetwatch.net (10.10.1.8): 
(The 1 port scanned but not shown below is in state: closed) 
Port       State       Service 
22/tcp     open        ssh 
Remote operating system guess: FreeBSD 4.6.2-RELEASE - 4.7-STABLE 
Uptime 0.045 days (since Mon May  5 16:04:16 2003) 
TCP Sequence Prediction: Class=truly random 
                         Difficulty=9999999 (Good luck!) 
IPID Sequence Generation: Incremental 
 
Nmap run completed -- 1 IP address (1 host up) scanned in 7.961 seconds 
 
 
The Tcpdump output for the T1 test: 
 
17:09:01.367448 10.10.1.3.37782 > 10.10.1.8.22: SE [tcp sum ok] 
345889334:345889334(0) win 3072 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> (ttl 58, id 32560, len 60) 
    4500 003c 7f30 0000 3a06 eb6d 0a0a 0103 
    0a0a 0108 9396 0016 149d da36 0000 0000 
    a042 0c00 2456 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:01.368027 10.10.1.8.22 > 10.10.1.3.37782: S [tcp sum ok] 
1496601119:1496601119(0) ack 345889335 win 57344 <mss 1460,nop,wscale 
0,nop,nop,timestamp 388530 1061109567> (DF) (ttl 64, id 3348, len 60) 
    4500 003c 0d14 4000 4006 178a 0a0a 0108 
    0a0a 0103 0016 9396 5934 521f 149d da37 
    a012 e000 bacd 0000 0204 05b4 0103 0300 
    0101 080a 0005 edb2 3f3f 3f3f 
 
 
The Tcpdump output for the T2 test: 
 
17:09:01.367578 10.10.1.3.37783 > 10.10.1.8.22: . [tcp sum ok] 
345889334:345889334(0) win 4096 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> (ttl 59, id 25998, len 60) 
    4500 003c 658e 0000 3b06 0410 0a0a 0103 
    0a0a 0108 9397 0016 149d da36 0000 0000 
    a000 1000 2097 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 

                                                 
3 More information about Tcpdump can be found at http://www.tcpdump.org/. 



7 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

 
 
The Tcpdump output for the T3 test: 
 
17:09:01.367689 10.10.1.3.37784 > 10.10.1.8.22: SFP [tcp sum ok] 
345889334:345889334(0) win 4096 urg 0 <wscale 10,nop,mss 265,timestamp 
1061109567 0,eol> (ttl 55, id 26761, len 60) 
    4500 003c 6889 0000 3706 0515 0a0a 0103 
    0a0a 0108 9398 0016 149d da36 0000 0000 
    a02b 1000 206b 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:01.368171 10.10.1.8.22 > 10.10.1.3.37784: S [tcp sum ok] 
1146976671:1146976671(0) ack 345889335 win 57344 <mss 1460,nop,wscale 
0,nop,nop,timestamp 388530 1061109567> (DF) (ttl 64, id 3349, len 60) 
    4500 003c 0d15 4000 4006 1789 0a0a 0108 
    0a0a 0103 0016 9398 445d 799f 149d da37 
    a012 e000 a822 0000 0204 05b4 0103 0300 
    0101 080a 0005 edb2 3f3f 3f3f 
 
 
The Tcpdump output for the T4 test: 
 
17:09:01.367798 10.10.1.3.37785 > 10.10.1.8.22: . [tcp sum ok] 
345889334:345889334(0) ack 0 win 4096 <wscale 10,nop,mss 265,timestamp 
1061109567 0,eol> (ttl 59, id 32437, len 60) 
    4500 003c 7eb5 0000 3b06 eae8 0a0a 0103 
    0a0a 0108 9399 0016 149d da36 0000 0000 
    a010 1000 2085 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:01.368637 10.10.1.8.22 > 10.10.1.3.37785: R [tcp sum ok] 0:0(0) win 0 
(ttl 64, id 3350, len 40) 
    4500 0028 0d16 0000 4006 579c 0a0a 0108 
    0a0a 0103 0016 9399 0000 0000 0000 0000 
    5004 0000 0613 0000 7e7e 7e7e 7e7e 
 
 
The Tcpdump output for the T5 test: 
 
17:09:01.367907 10.10.1.3.37786 > 10.10.1.8.23: S [tcp sum ok] 
345889334:345889334(0) win 1024 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> (ttl 48, id 33179, len 60) 
    4500 003c 819b 0000 3006 f302 0a0a 0103 
    0a0a 0108 939a 0017 149d da36 0000 0000 
    a002 0400 2c91 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:01.369716 10.10.1.8.23 > 10.10.1.3.37786: R [tcp sum ok] 0:0(0) ack 
345889335 win 0 (ttl 64, id 3351, len 40) 
    4500 0028 0d17 0000 4006 579b 0a0a 0108 
    0a0a 0103 0017 939a 0000 0000 149d da37 
    5014 0000 172c 0000 7e7e 7e7e 7e7e 
 
 
The Tcpdump output for the T6 test: 
 
17:09:01.368064 10.10.1.3.37787 > 10.10.1.8.23: . [tcp sum ok] 
345889334:345889334(0) ack 0 win 3072 <wscale 10,nop,mss 265,timestamp 
1061109567 0,eol> (ttl 42, id 21753, len 60) 
    4500 003c 54f9 0000 2a06 25a5 0a0a 0103 
    0a0a 0108 939b 0017 149d da36 0000 0000 
    a010 0c00 2482 0000 0303 0a01 0204 0109 



8 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

    080a 3f3f 3f3f 0000 0000 0000 
17:09:01.369784 10.10.1.8.23 > 10.10.1.3.37787: R [tcp sum ok] 0:0(0) win 0 
(ttl 64, id 3352, len 40) 
    4500 0028 0d18 0000 4006 579a 0a0a 0108 
    0a0a 0103 0017 939b 0000 0000 0000 0000 
    5004 0000 0610 0000 7e7e 7e7e 7e7e 
 
 
The Tcpdump output for the T7 test: 
 
17:09:01.368392 10.10.1.3.37788 > 10.10.1.8.23: FP [tcp sum ok] 
345889334:345889334(0) win 1024 urg 0 <wscale 10,nop,mss 265,timestamp 
1061109567 0,eol> (ttl 40, id 20620, len 60) 
    4500 003c 508c 0000 2806 2c12 0a0a 0103 
    0a0a 0108 939c 0017 149d da36 0000 0000 
    a029 0400 2c68 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:01.369843 10.10.1.8.23 > 10.10.1.3.37788: R [tcp sum ok] 0:0(0) ack 
345889334 win 0 (ttl 64, id 3353, len 40) 
    4500 0028 0d19 0000 4006 5799 0a0a 0108 
    0a0a 0103 0017 939c 0000 0000 149d da36 
    5014 0000 172b 0000 7e7e 7e7e 7e7e 
 
 
The Tcpdump output for the port unreachable test: 
 
17:09:01.368674 10.10.1.3.37775 > 10.10.1.8.23: udp 300 (ttl 58, id 28293, len 
328) 
    4500 0148 6e85 0000 3a11 fb01 0a0a 0103 
    0a0a 0108 938f 0017 0134 2694 5757 5757 
    5757 5757 5757 5757 5757 5757 5757 5757 
    5757 5757 5757 5757 5757 5757 5757 5757 
    5757 5757 5757 5757 5757 5757 5757 5757 
    5757 
17:09:01.369930 10.10.1.8 > 10.10.1.3: icmp: 10.10.1.8 udp port 23 unreachable 
for 10.10.1.3.37775 > 10.10.1.8.23: [no cksum] udp 300 (ttl 58, id 28293, len 
328) (ttl 64, id 3354, len 56) 
    4500 0038 0d1a 0000 4001 578d 0a0a 0108 
    0a0a 0103 0303 6822 0000 0000 4500 0148 
    6e85 0000 3a11 fb01 0a0a 0103 0a0a 0108 
    938f 0017 0134 0000 
 
 
The Tcpdump output for the TCP sequenceability test: 
 
17:09:05.260147 10.10.1.3.37776 > 10.10.1.8.22: S [tcp sum ok] 
345889335:345889335(0) win 4096 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> (ttl 59, id 25222, len 60) 
    4500 003c 6286 0000 3b06 0718 0a0a 0103 
    0a0a 0108 9390 0016 149d da37 0000 0000 
    a002 1000 209b 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:05.260640 10.10.1.8.22 > 10.10.1.3.37776: S [tcp sum ok] 
3836437649:3836437649(0) ack 345889336 win 57344 <mss 1460,nop,wscale 
0,nop,nop,timestamp 388919 1061109567> (DF) (ttl 64, id 3355, len 60) 
    4500 003c 0d1b 4000 4006 1783 0a0a 0108 
    0a0a 0103 0016 9390 e4ab 6491 149d da38 
    a012 e000 1b64 0000 0204 05b4 0103 0300 
    0101 080a 0005 ef37 3f3f 3f3f 



9 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

17:09:05.260758 10.10.1.3.37776 > 10.10.1.8.22: R [tcp sum ok] 
345889336:345889336(0) win 0 (DF) (ttl 64, id 25086, len 40) 
    4500 0028 61fe 4000 4006 c2b3 0a0a 0103 
    0a0a 0108 9390 0016 149d da38 0000 0000 
    5004 0000 1746 0000 
17:09:05.684526 10.10.1.3.37777 > 10.10.1.8.22: S [tcp sum ok] 
345889336:345889336(0) win 4096 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> (ttl 51, id 7781, len 60) 
    4500 003c 1e65 0000 3306 5339 0a0a 0103 
    0a0a 0108 9391 0016 149d da38 0000 0000 
    a002 1000 2099 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:05.684983 10.10.1.8.22 > 10.10.1.3.37777: S [tcp sum ok] 
1270573067:1270573067(0) ack 345889337 win 57344 <mss 1460,nop,wscale 
0,nop,nop,timestamp 388961 1061109567> (DF) (ttl 64, id 3356, len 60) 
    4500 003c 0d1c 4000 4006 1782 0a0a 0108 
    0a0a 0103 0016 9391 4bbb 680b 149d da39 
    a012 e000 b0ae 0000 0204 05b4 0103 0300 
    0101 080a 0005 ef61 3f3f 3f3f 
17:09:05.685083 10.10.1.3.37777 > 10.10.1.8.22: R [tcp sum ok] 
345889337:345889337(0) win 0 (DF) (ttl 64, id 10628, len 40) 
    4500 0028 2984 4000 4006 fb2d 0a0a 0103 
    0a0a 0108 9391 0016 149d da39 0000 0000 
    5004 0000 1744 0000 
17:09:06.106325 10.10.1.3.37778 > 10.10.1.8.22: S [tcp sum ok] 
345889337:345889337(0) win 3072 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> (ttl 50, id 16305, len 60) 
    4500 003c 3fb1 0000 3206 32ed 0a0a 0103 
    0a0a 0108 9392 0016 149d da39 0000 0000 
    a002 0c00 2497 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:06.106795 10.10.1.8.22 > 10.10.1.3.37778: S [tcp sum ok] 
4221982072:4221982072(0) ack 345889338 win 57344 <mss 1460,nop,wscale 
0,nop,nop,timestamp 389004 1061109567> (DF) (ttl 64, id 3357, len 60) 
    4500 003c 0d1d 4000 4006 1781 0a0a 0108 
    0a0a 0103 0016 9392 fba6 5578 149d da3a 
    a012 e000 1329 0000 0204 05b4 0103 0300 
    0101 080a 0005 ef8c 3f3f 3f3f 
17:09:06.106891 10.10.1.3.37778 > 10.10.1.8.22: R [tcp sum ok] 
345889338:345889338(0) win 0 (DF) (ttl 64, id 19726, len 40) 
    4500 0028 4d0e 4000 4006 d7a3 0a0a 0103 
    0a0a 0108 9392 0016 149d da3a 0000 0000 
    5004 0000 1742 0000 
17:09:06.520218 10.10.1.3.37779 > 10.10.1.8.22: S [tcp sum ok] 
345889338:345889338(0) win 2048 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> (ttl 53, id 9665, len 60) 
    4500 003c 25c1 0000 3506 49dd 0a0a 0103 
    0a0a 0108 9393 0016 149d da3a 0000 0000 
    a002 0800 2895 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:06.520682 10.10.1.8.22 > 10.10.1.3.37779: S [tcp sum ok] 
2973548148:2973548148(0) ack 345889339 win 57344 <mss 1460,nop,wscale 
0,nop,nop,timestamp 389045 1061109567> (DF) (ttl 64, id 3358, len 60) 
    4500 003c 0d1e 4000 4006 1780 0a0a 0108 
    0a0a 0103 0016 9393 b13c be74 149d da3b 
    a012 e000 f46b 0000 0204 05b4 0103 0300 
    0101 080a 0005 efb5 3f3f 3f3f 
17:09:06.520780 10.10.1.3.37779 > 10.10.1.8.22: R [tcp sum ok] 
345889339:345889339(0) win 0 (DF) (ttl 64, id 27369, len 40) 
    4500 0028 6ae9 4000 4006 b9c8 0a0a 0103 
    0a0a 0108 9393 0016 149d da3b 0000 0000 
    5004 0000 1740 0000 



10 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

17:09:06.942130 10.10.1.3.37780 > 10.10.1.8.22: S [tcp sum ok] 
345889339:345889339(0) win 2048 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> (ttl 41, id 44087, len 60) 
    4500 003c ac37 0000 2906 cf66 0a0a 0103 
    0a0a 0108 9394 0016 149d da3b 0000 0000 
    a002 0800 2893 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:06.942585 10.10.1.8.22 > 10.10.1.3.37780: S [tcp sum ok] 
2330511456:2330511456(0) ack 345889340 win 57344 <mss 1460,nop,wscale 
0,nop,nop,timestamp 389087 1061109567> (DF) (ttl 64, id 3359, len 60) 
    4500 003c 0d1f 4000 4006 177f 0a0a 0108 
    0a0a 0103 0016 9394 8ae8 c860 149d da3c 
    a012 e000 10a8 0000 0204 05b4 0103 0300 
    0101 080a 0005 efdf 3f3f 3f3f 
17:09:06.942672 10.10.1.3.37780 > 10.10.1.8.22: R [tcp sum ok] 
345889340:345889340(0) win 0 (DF) (ttl 64, id 17270, len 40) 
    4500 0028 4376 4000 4006 e13b 0a0a 0103 
    0a0a 0108 9394 0016 149d da3c 0000 0000 
    5004 0000 173e 0000 
17:09:07.067128 10.10.1.3.37781 > 10.10.1.8.22: S [tcp sum ok] 
345889340:345889340(0) win 4096 <wscale 10,nop,mss 265,timestamp 1061109567 
0,eol> (ttl 43, id 60721, len 60) 
    4500 003c ed31 0000 2b06 8c6c 0a0a 0103 
    0a0a 0108 9395 0016 149d da3c 0000 0000 
    a002 1000 2091 0000 0303 0a01 0204 0109 
    080a 3f3f 3f3f 0000 0000 0000 
17:09:07.067616 10.10.1.8.22 > 10.10.1.3.37781: S [tcp sum ok] 
2371689692:2371689692(0) ack 345889341 win 57344 <mss 1460,nop,wscale 
0,nop,nop,timestamp 389100 1061109567> (DF) (ttl 64, id 3360, len 60) 
    4500 003c 0d20 4000 4006 177e 0a0a 0108 
    0a0a 0103 0016 9395 8d5d 1cdc 149d da3d 
    a012 e000 b9a8 0000 0204 05b4 0103 0300 
    0101 080a 0005 efec 3f3f 3f3f 
17:09:07.067715 10.10.1.3.37781 > 10.10.1.8.22: R [tcp sum ok] 
345889341:345889341(0) win 0 (DF) (ttl 64, id 17039, len 40) 
    4500 0028 428f 4000 4006 e222 0a0a 0103 
    0a0a 0108 9395 0016 149d da3d 0000 0000 
    5004 0000 173c 0000 
 
 
The results are then examined and compared with the OS signature database. If Nmap returns a guess 
like it has in our example it means that an exact signature match was found. 
 
Remote operating system guess: FreeBSD 4.6.2-RELEASE - 4.7-STABLE 
 
 
In our example, FreeBSD 4.6.2-RELEASE to 4.7-STABLE was found to be the best match. From 
FreeBSD 4.6.2 – 4.7 there are few differences. This is due to the fact that they share a very similar 
TCP/IP stack. 



11 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

2.5 Defenses 
There are some defensive measures to protect against the OS detection method used by Nmap. 
Among the defenses are: 
 
§ In a normal network environment systems should sit behind some type of firewall4. 

Machines that are viewable from the Internet should only keep the needed ports open while 
the rest of the ports should be filtered by the firewall. This is a good defense since Nmap 
works best when it finds at least one open TCP port, one closed TCP port, and one closed 
UDP port. If all the needed ports aren’t found then Nmap’s accuracy drops off. 

§ Users can change characteristics of the machines TCP/IP stack. This can also be 
accomplished via kernel patches5. 

§ Network intrusion detection systems6 (IDS) can be used, if configured correctly, to detect 
the OS detection method used by Nmap because of the utilization of malformed packets. 

                                                 
4 Check Point makes a firewall product named FireWall-1 (http://www.checkpoint.com/ ). 
5 An example for Linux is IP Personality (http://ippersonality.sourceforge.net/). An example for BSD is the 
Blackhole option. 
6 Snort is an example of a network intrusion detection system (http://www.snort.org/). 



12 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

3.0 RINGv2 Tool 
RINGv2 is a remote OS detection tool. It is designed to determine the OS running on the remote 
machine with minimal target disturbance. The RINGv2 OS detection methods have been included as 
a patched Nmap version 3.00 now called Nmap-ringv2. 
 
 

3.1 SYN_RCVD Method 
This is one of the OS detection methods that Nmap-ringv2 can perform. The SYN_RCVD method 
works by measuring the retransmission timeout (RTO) values of the SYN_ACK responses from the 
target machine. 
 

3.1.1 Technique 
Before Nmap-ringv2 runs this OS detection method it runs a port scan against the target machine. It 
performs a port scan so it can find an open port on the target machine. Nmap-ringv2 needs at least 
one open TCP port to work. The SYN_RCVD method works by measuring the retransmission 
timeout values of the SYN_ACK responses from the target machine. See Diagram 1 for a general 
idea of the way it works. 
 

 
Diagram 1: SYN_RCVD method 

 
First, a firewall rule is set up locally to block incoming TCP packets with the SYN and ACK flags 
enabled from the target machine specified by the user. Next, a TCP packet with the SYN flag 
enabled is sent to an open TCP port to attempt a connection establishment. The target machine tries 
to send an acknowledgement packet but the firewall rule that was set up blocks it. Nmap-ringv2 
keeps track of the delay between each retransmission. 
 
After Nmap-ringv2 has received the retransmission timeout responses it builds an OS fingerprint 
signature, then tries to find a match in the fingerprint database. If the signature is found in the 
database, Nmap-ringv2 will list it as the Remote OS guess. If the signature isn’t found in the 
database, Nmap-ringv2 will display a message saying “No exact matches for host (test conditions 
non-ideal).”, and shows the TCP/IP fingerprint information found. 



13 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

3.1.2 OS Signature 
Based on the results (information in the packets sent back to us) of the tests that Nmap-ringv2 
performs, an OS signature is built. I will now show an example signature from the database, and then 
explain what it means. Since we are dealing with the SYN_RCVD method I will only explain the lines 
that apply. 
 
FingerPrint NetBSD 1.6 i386 
Ring_Syn(nbPkt=4%Time=60%p=2900000%p=6000000%p=12000000%p=24000000) 
Ring_LastAck(nbPkt=12%Time=480%Connect=4040%p=960000%p=2000000%p=4000000%p=8000
000%p=16000000%p=32000000%p=64000000%p=64000000%p=64000000%p=64000000%p=6400000
0%p=64000000) 
 
I will go through the signature line by line. 
 
FingerPrint NetBSD 1.6 i386 RINGv2 
 
This signature covers NetBSD 1.6 for the i386 platform. 
 
Ring_Syn(nbPkt=4%Time=60%p=2900000%p=6000000%p=12000000%p=24000000) 
 
This line represents the results of the SYN_RCVD test. Remember that this test documents the 
retransmission timeout values of the SYN_ACK responses. NbPkt=4 means that the number of 
packets sent was 4. Time=60 means that Nmap-ringv2 timeout value is 60 seconds. p=2900000 
means that the SYN_ACK was resent 2.90~ seconds after the first SYN_ACK, then 6.00~, 12.00~, 
and finally 24.00~ seconds after that. 
 

3.1.3 Advantages 
The Nmap-ringv2 tool offers many advantages over other remote active OS fingerprinting tools. 
Here are some reasons users might want to utilize this tool for this OS detection method: 
 
§ “Half-open” scanning is supported like in Nmap. 
§ The main advantage is that it only requires one open TCP port. If the target system is behind 

some sort of filtering device, normally there will only be one open port, with the rest being 
filtered. 

§ This technique uses a standard TCP packet. It tries to make a standard connection to the 
target machine; the connection establishment never gets completed. This type of method 
won’t disturb the target machine. 

§ Strict signature matching is utilized. 
§ It has built-in learning functions. 

 

3.1.4 Usage Example  
The sample run was produced utilizing a Linux Kernel 2.4.18 machine running Nmap-ringv2 
targeting a Microsoft Windows 2000 Server machine on the same local LAN. It should be noted that 
the Tcpdump log timestamps are slightly off of what Nmap-ringv2 records. 
 
The following is a sample run that Nmap-ringv2 produced using the SYN_RCVD method: 
 
 
# nmap-ringv2 –sS –-ring –-ring_timeout 30 –-ring_method s –v –p 445 10.10.1.7 
 
Starting nmap V. 3.00 ( www.insecure.org/nmap/ ) 



14 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

Host pluto.packetwatch.net (10.10.1.7) appears to be up ... good. 
Initiating SYN Stealth Scan against pluto.packetwatch.net (10.10.1.7) 
Adding open port 445/tcp 
The SYN Stealth Scan took 0 seconds to scan 1 ports. 
Warning:  OS detection will be MUCH less reliable because we did not find at 
least 1 open and 1 closed TCP port 
Try Time: 2847773 6008463 Interesting ports on pluto.packetwatch.net 
(10.10.1.7): 
Port       State       Service 
445/tcp    open        microsoft-ds             
Remote operating system guess: WinXP Home Base/SP1a, WinXP Pro Base/SP1a RINGv2 
 
Nmap run completed -- 1 IP address (1 host up) scanned in 33 seconds 
 
 
The Tcpdump output for the SYN packet that we sent to establish the connection: 
 
17:15:46.862626 10.10.1.5.26423 > 10.10.1.7.445: S 25644:25644(0) win 1024 <mss 
1460,sackOK,timestamp 79877292[|tcp]> (ttl 64, id 21012, len 60) 
    4500 003c 5214 0000 4006 1289 0a0a 0105 
    0a0a 0107 6737 01bd 0000 642c 0000 0000 
    a002 0400 8758 0000 0204 05b4 0402 080a 
    04c2 d4ac 0000 
 
 
The Tcpdump output for the first SYN_ACK response: 
 
17:15:46.863370 10.10.1.7.445 > 10.10.1.5.26423: S 3497663947:3497663947(0) ack 
25645 win 17520 <mss 1460,nop,wscale 0,nop,nop,timestamp[|tcp]> (DF) (ttl 128, 
id 76, len 64) 
    4500 0040 004c 4000 8006 e44c 0a0a 0107 
    0a0a 0105 01bd 6737 d07a 1dcb 0000 642d 
    b012 4470 1ffa 0000 0204 05b4 0103 0300 
    0101 080a 0000 
 
 
The Tcpdump output for the next SYN_ACK response: 
 
17:15:49.849402 10.10.1.7.445 > 10.10.1.5.26423: S 3497663947:3497663947(0) ack 
25645 win 17520 <mss 1460,nop,wscale 0,nop,nop,timestamp[|tcp]> (DF) (ttl 128, 
id 77, len 64) 
    4500 0040 004d 4000 8006 e44b 0a0a 0107 
    0a0a 0105 01bd 6737 d07a 1dcb 0000 642d 
    b012 4470 1ffa 0000 0204 05b4 0103 0300 
    0101 080a 0000 
 
 
The Tcpdump output for the final SYN_ACK response: 
 
17:15:55.857912 10.10.1.7.445 > 10.10.1.5.26423: S 3497663947:3497663947(0) ack 
25645 win 17520 <mss 1460,nop,wscale 0,nop,nop,timestamp[|tcp]> (DF) (ttl 128, 
id 78, len 64) 
    4500 0040 004e 4000 8006 e44a 0a0a 0107 
    0a0a 0105 01bd 6737 d07a 1dcb 0000 642d 
    b012 4470 1ffa 0000 0204 05b4 0103 0300 
    0101 080a 0000 
 
 



15 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

The results are then examined and compared with the OS signature database. If Nmap-ringv2 
returns a guess like it has in our example it means that an exact signature match was found. 
 
Remote operating system guess: WinXP Home Base/SP1a, WinXP Pro Base/SP1a RINGv2 
 
 
In our example, Microsoft Windows XP Home Edition base through SP1a, and Microsoft Windows 
XP Professional base through SP1a were found to be the best match. From Microsoft Windows 
2000 base through SP1a there are few differences. This is due to the fact that they share a very 
similar TCP/IP stack. 
 

3.1.5 Defenses 
There are some defensive measures to protect against this OS detection method used by Nmap-
ringv2. Among the defenses are: 
 
§ First, machines should be behind some sort of firewall or filtering device. Only needed ports 

should be left open, the rest should be filtered. This means that there should only be a few 
ports left open. Closing all TCP ports would protect against this method. 

§ A packet mangler like netfilter/iptables7 could be used to mangle packets to enforce 
misleading RTO values on all outgoing packets. This would cause pen-testers or black-hats 
to think that were fingerprinting a different OS. 

§ A proxy or firewall could be used to hide machines behind. You would need to use proxy or 
firewall that supported SYN Relay or SYN Gateway techniques8. Check Point has had 
support for these techniques in their FireWall-1 product. A chart of FireWall-1’s support for 
these techniques can be found at http://www.fw-1.de/aerasec/ng/syndefender-01.html. 
Some diagrams of how they work are included. 

 
 
 

                                                 
7 More information on netfilter/iptables can be found at http://www.netfilter.org/. 
8 A guide of how these techniques work can be found at http://www.phoneboy.com/fom-
serve/cache/153.html. 



16 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

3.2 LAST_ACK Method 
This is one of the OS detection methods that Nmap-ringv2 can perform. The LAST_ACK method 
works by measuring the retransmission timeout (RTO) values of the FIN_ACK responses from the 
target machine. 
 

3.2.1 Technique 
Before Nmap-ringv2 runs this OS detection method it runs a port scan against the target machine. It 
performs a port scan so it can find an open port on the target machine. Nmap-ringv2 needs at least 
one open TCP port to work. The LAST_ACK method works by measuring the retransmission 
timeout values of the FIN_ACK responses from the target machine. See Diagram 2 for a general 
idea of the way it works. 
 

 
Diagram 2: LAST_ACK method 

 
First, a firewall rule is set up locally to block incoming TCP packets with the FIN and ACK flags 
enabled from the target machine specified by the user. Next, a TCP packet with the SYN flag 
enabled is sent to an open TCP port to attempt a connection establishment. The target machine 
responds with an acknowledgement packet. Next, a TCP packet with the ACK flag enabled is sent to 
the complete the connection. Now we have a connection established between the two hosts. Next, a 
TCP packet with the FIN and ACK flags enabled is sent to the target machine to attempt a 
connection termination. The target machine tries to send an acknowledgement packet but the firewall 
rule that was set up blocks it. Nmap-ringv2 keeps track of the delay between each retransmission. 
 
After Nmap-ringv2 has received the retransmission timeout responses it builds an OS fingerprint 
signature, then tries to find a match in the fingerprint database. If the signature is found in the 
database, Nmap-ringv2 will list it as the Remote OS guess. If the signature isn’t found in the 



17 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

database, Nmap-ringv2 will display a message saying “No exact matches for host (test conditions 
non-ideal).”, and shows the TCP/IP fingerprint information found. 
 

3.2.2 OS Signature 
Based on the results (information in the packets sent back to us) of the tests that Nmap-ringv2 
performs, an OS signature is built. I will now show an example signature from the database, and then 
explain what it means. Since we are dealing with the LAST_ACK method I will only explain the lines 
that apply. 
 
FingerPrint NetBSD 1.6 i386 
Ring_Syn(nbPkt=4%Time=60%p=2900000%p=6000000%p=12000000%p=24000000) 
Ring_LastAck(nbPkt=12%Time=480%Connect=4040%p=960000%p=2000000%p=4000000%p=8000
000%p=16000000%p=32000000%p=64000000%p=64000000%p=64000000%p=64000000%p=6400000
0%p=64000000) 
 
I will go through the signature line by line. 
 
FingerPrint NetBSD 1.6 i386 RINGv2 
 
This signature covers NetBSD 1.6 for the i386 platform. 
 
Ring_LastAck(nbPkt=12%Time=480%Connect=4040%p=960000%p=2000000%p=4000000%p=8000
000%p=16000000%p=32000000%p=64000000%p=64000000%p=64000000%p=64000000%p=6400000
0%p=64000000) 
 
This line represents the results of the LAST_ACK test. Remember that this test documents the 
retransmission times of the FIN_ACK responses. NbPkt=12 means that the number of packets sent 
was 12. Time=480 means that Nmap-ringv2 timeout value is 480 seconds. Connect=4040 means 
that the connect time was 4040. p=960000 means that the FIN_ACK was resent 4.00~ seconds after 
the first FIN_ACK, then 8.00~, 16.00~, 32.00~, 64.00~, 64.00~, 64.00~, 64.00~, 64.00, and finally 
64.00~ seconds after that. 
 

3.2.3 Advantages 
The Nmap-ringv2 tool offers many advantages over other OS fingerprinting tools. Here are some 
reasons users might want to utilize this tool for this OS detection method: 
 
§ “Half-open” scanning is supported like in Nmap. 
§ The main advantage is that it only requires one open TCP port. If the target system is behind 

some sort of filtering device, normally there will only be one open port, with the rest being 
filtered. 

§ This technique uses a standard TCP packet. It establishes a standard connection, then tries 
to terminate it, but never gets completed. This type of method won’t disturb the target 
machine. 

§ Strict signature matching is utilized. 
§ It has built-in learning functions. 



18 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

3.2.4 Usage Example 
The sample run was produced utilizing a Linux Kernel 2.4.18 machine running Nmap-ringv2 
targeting a Microsoft Windows 2000 Server machine on the same local LAN. It should be noted that 
the Tcpdump log timestamps are slightly off of what Nmap-ringv2 records. 
 
The following is a sample run that Nmap-ringv2 produced using the LAST_ACK method: 
 
 
# nmap-ringv2 –sS –-ring –-ring_timeout 120 –-ring_method l –v –p 445 10.10.1.7 
 
Starting nmap V. 3.00 ( www.insecure.org/nmap/ ) 
Host pluto.packetwatch.net (10.10.1.7) appears to be up ... good. 
Initiating SYN Stealth Scan against pluto.packetwatch.net (10.10.1.7) 
Adding open port 445/tcp 
The SYN Stealth Scan took 0 seconds to scan 1 ports. 
Warning:  OS detection will be MUCH less reliable because we did not find at 
least 1 open and 1 closed TCP port 
Try Time: 2922934 6008497 12017073 24034151 48068190 Interesting ports on 
pluto.packetwatch.net (10.10.1.7): 
Port       State       Service 
445/tcp    open        microsoft-ds             
Remote operating system guess: WinXP Home Base/SP1a, WinXP Pro Base/SP1a RINGv2 
 
Nmap run completed -- 1 IP address (1 host up) scanned in 124 seconds 
 
 
The Tcpdump output for the FIN packet that we sent to terminate the connection: 
 
17:18:18.210573 10.10.1.5.1050 > 10.10.1.7.445: F [tcp sum ok] 
1320277821:1320277821(0) ack 3535179022 win 5840 <nop,nop,timestamp 641619 0> 
(DF) (ttl 64, id 7816, len 52) 
    4500 0034 1e88 4000 4006 061d 0a0a 0105 
    0a0a 0107 041a 01bd 4eb1 d73d d2b6 8d0e 
    8011 16d0 f3e4 0000 0101 080a 0009 ca53 
    0000 0000 
 
 
The Tcpdump output for the first FIN-ACK response: 
 
17:18:18.211232 10.10.1.7.445 > 10.10.1.5.1050: F [tcp sum ok] 
3535179022:3535179022(0) ack 1320277822 win 17520 <nop,nop,timestamp 5623 
641619> (DF) (ttl 128, id 84, len 52) 
    4500 0034 0054 4000 8006 e450 0a0a 0107 
    0a0a 0105 01bd 041a d2b6 8d0e 4eb1 d73e 
    8011 4470 b04c 0000 0101 080a 0000 15f7 
    0009 ca53 
 
 
The Tcpdump output for the next FIN-ACK response: 
 
17:18:21.164037 10.10.1.7.445 > 10.10.1.5.1050: F [tcp sum ok] 
3535179022:3535179022(0) ack 1320277822 win 17520 <nop,nop,timestamp 5653 
641619> (DF) (ttl 128, id 85, len 52) 
    4500 0034 0055 4000 8006 e44f 0a0a 0107 
    0a0a 0105 01bd 041a d2b6 8d0e 4eb1 d73e 
    8011 4470 b02e 0000 0101 080a 0000 1615 
    0009 ca53 



19 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

 
 
The Tcpdump output for the next FIN-ACK response: 
 
17:18:27.172561 10.10.1.7.445 > 10.10.1.5.1050: F [tcp sum ok] 
3535179022:3535179022(0) ack 1320277822 win 17520 <nop,nop,timestamp 5713 
641619> (DF) (ttl 128, id 86, len 52) 
    4500 0034 0056 4000 8006 e44e 0a0a 0107 
    0a0a 0105 01bd 041a d2b6 8d0e 4eb1 d73e 
    8011 4470 aff2 0000 0101 080a 0000 1651 
    0009 ca53 
 
 
The Tcpdump output for the next FIN-ACK response: 
 
17:18:39.189615 10.10.1.7.445 > 10.10.1.5.1050: F [tcp sum ok] 
3535179022:3535179022(0) ack 1320277822 win 17520 <nop,nop,timestamp 5833 
641619> (DF) (ttl 128, id 87, len 52) 
    4500 0034 0057 4000 8006 e44d 0a0a 0107 
    0a0a 0105 01bd 041a d2b6 8d0e 4eb1 d73e 
    8011 4470 af7a 0000 0101 080a 0000 16c9 
    0009 ca53 
 
 
The Tcpdump output for the next FIN-ACK response: 
 
17:19:03.223727 10.10.1.7.445 > 10.10.1.5.1050: F [tcp sum ok] 
3535179022:3535179022(0) ack 1320277822 win 17520 <nop,nop,timestamp 6073 
641619> (DF) (ttl 128, id 88, len 52) 
    4500 0034 0058 4000 8006 e44c 0a0a 0107 
    0a0a 0105 01bd 041a d2b6 8d0e 4eb1 d73e 
    8011 4470 ae8a 0000 0101 080a 0000 17b9 
    0009 ca53 
 
 
The Tcpdump output for the next FIN-ACK response: 
 
17:19:51.291956 10.10.1.7.445 > 10.10.1.5.1050: F [tcp sum ok] 
3535179022:3535179022(0) ack 1320277822 win 17520 <nop,nop,timestamp 6554 
641619> (DF) (ttl 128, id 89, len 52) 
    4500 0034 0059 4000 8006 e44b 0a0a 0107 
    0a0a 0105 01bd 041a d2b6 8d0e 4eb1 d73e 
    8011 4470 aca9 0000 0101 080a 0000 199a 
    0009 ca53 
 
 
The results are then examined and compared with the OS signature database. If Nmap-ringv2 
returns a guess like it has in our example it means that an exact signature match was found. 
 
Remote operating system guess: WinXP Home Base/SP1a, WinXP Pro Base/SP1a 
 
 
In our example, Microsoft Windows XP Home Edition base through SP1a, and Microsoft Windows 
XP Professional base through SP1a were found to be the best match. From Microsoft Windows 
2000 base through SP1a there are few differences. This is due to the fact that they share a very 
similar TCP/IP stack. 
 



20 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

3.2.5 Defenses 
There are some defensive measures to protect against this OS detection method used by Nmap-
ringv2. Among the defenses are: 
 
§ First, machines should be behind some sort of firewall or filtering device. Only needed ports 

should be left open, the rest should be filtered. This means that there should only be a few 
ports left open. Closing all TCP ports would protect against this method. 

§ A packet mangler can be used to modify outgoing RTO values. 
§ A proxy or firewall that supports SYN Relay or SYN Gateway techniques can be used to 

hide machines. Check Point’s FireWall-1 product supports these techniques. More 
information can be found at the links mentioned in section 3.1.5. 



21 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

3.3 FIN_WAIT_1 Method 
This is the last of the OS detection methods that Nmap-ringv2 can perform. The FIN_WAIT_1 
method works by measuring the retransmission timeout (RTO) values of the FIN_ACK responses 
from the target machine after a normal exchange of data. This method is experimental therefore I’ve 
only included information on how the technique works and the advantages it offers. 
 

3.3.1 Technique 
Before Nmap-ringv2 runs this OS detection method it runs a port scan against the target machine. It 
performs a port scan so it can find an open port on the target machine. Nmap-ringv2 needs at least 
one open TCP port to work. The FIN_WAIT_1 method works by measuring the retransmission 
timeout values of the FIN_ACK responses from the target machine after a normal exchange of data. 
See Diagram 3 for a general idea of the way it works. 
 

 
Diagram 3: FIN_WAIT_1 method 

 
First, a firewall rule is set up locally to block incoming TCP packets with the FIN and ACK flags 
enabled from the target machine specified by the user. Next, a TCP packet with the SYN flag 
enabled is sent to an open TCP port to attempt a connection establishment. The target machine 
responds with an acknowledgement packet. Next, a TCP packet with the ACK flag enabled is sent to 
the complete the connection. Now we have a connection established between the two hosts. Next, a 



22 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

TCP packet with the PSH and ACK flags enabled is sent to the target machine to start a normal 
exchange of data. The target machine sends an acknowledgement packet back. Next, the target 
machine sends a TCP packet with the PSH and ACK flags enabled. Now, we reply with an 
acknowledgement packet back. This concludes the exchange of data. The target machine then sends 
a TCP packet with the FIN and ACK flags enabled to attempt a connection termination but the 
firewall rule that was set up blocks it. Nmap-ringv2 keeps track of the delay between each 
retransmission. 
 
After Nmap-ringv2 has received the retransmission timeout responses it builds an OS fingerprint 
signature, then tries to find a match in the fingerprint database. If the signature is found in the 
database, Nmap-ringv2 will list it as the Remote OS guess. If the signature isn’t found in the 
database, Nmap-ringv2 will display a message saying “No exact matches for host (test conditions 
non-ideal).”, and shows the TCP/IP fingerprint information found. 
 

3.3.2 Advantages 
The Nmap-ringv2 tool offers many advantages over other OS fingerprinting tools. Here are some 
reasons users might want to utilize this tool for this OS detection method: 
 
§ “Half-open” scanning is supported like in Nmap. 
§ The main advantage is that it only requires one open TCP port. If the target system is behind 

some sort of filtering device, normally there will only be one open port, with the rest being 
filtered. 

§ It’s able to bypass SYN Relay and SYN Gateway techniques to perform OS fingerprinting 
tests on the real target. 

§ Strict signature matching is utilized. 
§ It has built-in learning functions. 



23 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

4.0 Xprobe2 Tool 
Xprobe2 is a remote active OS fingerprinting tool. It is designed with a different approach to OS 
fingerprinting. The Xprobe2 OS detection method identifies the type of the remote OS with a matrix 
based fingerprinting approach. This approach is also known as ‘’fuzzy’’ matching. I’ll be using 
Xprobe2 version 0.1 since it was the current version at the time of this writing. 
 
 

4.1 Technique 
Unlike the other tools, Xprobe2 doesn’t run a port scan against the target machine. Xprobe2 needs at 
least one closed UDP port to work. Xprobe2 heavily uses the results found in the “ICMP Usage in 
Scanning” research project9 by Ofir Arkin. It relies primarily on the use of the ICMP protocol. 
 
Xprobe2 is modular in design so it has the capability to accept new modules, or other fingerprinting 
tests. Another idea to note is that Xprobe2 comes with an API so that users can write their own 
modules. 
 
Xprobe2 works by running different modules or tests against the target machine. There are two types 
of modules. There are the reachability modules, and the fingerprinting modules. The first two 
modules run are reachability tests. They try to determine if the target machine is alive. The rest of the 
modules are fingerprinting tests. They try to determine the OS the target is running. 
 
The first reachability module is the ICMP echo (ping) test. In this test an ICMP packet with an ICMP 
echo request message is sent. The goal is to elicit an ICMP packet with an ICMP echo reply message 
back from the target machine. 
 
The second reachability module is the TTL distance test. In this test a TCP packet with the SYN flag 
enabled is sent to a TCP port. The goal is to elicit, a TCP packet with the SYN and ACK flags 
enabled meaning the TCP port is opened or a TCP packet with the RST flag enabled meaning the 
TCP port is closed back from the target machine. If no response is received another TCP packet 
with the same options is sent to a different TCP port, with the same goal. 
 
The first fingerprinting module, known as Module A, is the ICMP echo request test. In this test an 
ICMP packet with an ICMP echo request message is sent. 
 
The second module, known as Module B, is the ICMP timestamp test. In this test an ICMP packet 
with an ICMP timestamp request message is sent. 
 
The third module, known as Module C, is the ICMP address mask test. In this test an ICMP packet 
with an ICMP address mask request message is sent. 
 
The fourth module, known as Module D, is the ICMP information request test. In this test an ICMP 
packet with an ICMP information request message is sent. 
 
The last module that Xprobe2 performs, known as Module E, is the ICMP port unreachable test. In 
this test a UDP packet acting as a DNS query result is sent. The goal is to elicit an ICMP packet with 
an ICMP port unreachable message back from the target machine. 
 

                                                 
9 Information about the project can be found at http://www.sys-security.com/html/projects/icmp.html. 



24 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

After Xprobe2 has received all of the responses from the modules, the scores are calculated and 
compared to the fingerprint database. Next, Xprobe2 returns with a primary guess which is the most 
probable match, according to the sum of all the scores. It also returns other possibilities. 
 
 

4.2 OS Signature 
Based on the results (information in the packets sent back to us) of the tests that Xprobe2 perfoms, 
an OS signature is built. I will now show an example signature from the database, and then explain 
what it means. 
 
fingerprint { 
 OS_ID = "OpenBSD 3.2" 
 #Entry inserted to the database by: Ofir Arkin (ofir@sys-security.com) 
 #Entry contributed by: Ofir Arkin (ofir@sys-security.com) 
 #Date: 6 April 2003 
 #Modified: 6 April 2003 
 
 #Module A 
 icmp_echo_code = !0 
 icmp_echo_ip_id = !0 
 icmp_echo_tos_bits = !0 
 icmp_echo_df_bit = 1 
 icmp_echo_reply_ttl = <255 
 
 #Module B 
 icmp_timestamp_reply = y 
 icmp_timestamp_reply_ttl = <255 
 icmp_timestamp_reply_ip_id = !0 
 
 #Module C 
 icmp_addrmask_reply = n 
 icmp_addrmask_reply_ttl = <255 
 icmp_addrmask_reply_ip_id = !0 
 
 #Module D 
 icmp_info_reply = n 
 icmp_info_reply_ttl = <255 
 icmp_info_reply_ip_id = !0 
 
 #Module E 
 #IP_Header_of_the_UDP_Port_Unreachable_error_message 
 icmp_unreach_echoed_dtsize = 8 
 icmp_unreach_reply_ttl = <255 
 icmp_unreach_precedence_bits = 0 
 icmp_unreach_df_bit = 0 
 icmp_unreach_ip_id = !0 
 
 #Original_data_echoed_with_the_UDP_Port_Unreachable_error_message 
 icmp_unreach_echoed_udp_cksum = OK 
 icmp_unreach_echoed_ip_cksum  = BAD 
 icmp_unreach_echoed_ip_id = OK 
 icmp_unreach_echoed_total_len = <20 
 icmp_unreach_echoed_3bit_flags = OK 
} 
 
I will go through the signature line by line. 
 
OS_ID = "OpenBSD 3.2" 



25 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

 
This signature covers OpenBSD 3.2. 
 
Figure 2 is included to show the IP header which will be referred to in the results of some of the 
tests.  
 

 
Figure 2: IP header 

 
#Module A 
icmp_echo_code = !0 
icmp_echo_ip_id = !0 
icmp_echo_tos_bits = !0 
icmp_echo_df_bit = 1 
icmp_echo_reply_ttl = <255 
 
These lines represent the results from the ICMP echo request test. icmp_echo_code = !0 means that 
the code in the ICMP header does not equal 0. icmp_echo_ip_id = !0 means that the identification 
number in the IP header does not equal 0. icmp_echo_tos_bits = !0 means that the TOS or 
Differentiated Services Field in the IP header does not equal 0. icmp_echo_df_bit = 1 means that the 
Don’t fragment flag in the IP header was enabled so is therefore equal to 1. icmp_echo_reply_ttl = 
<255 means that the time to live in the IP header is less than or equal to 255. 
 
#Module B 
icmp_timestamp_reply = y 
icmp_timestamp_reply_ttl = <255 
icmp_timestamp_reply_ip_id = !0 
 
These lines represent the results from the ICMP timestamp test. icmp_timestamp_reply = y means 
that we received an ICMP timestamp reply message from the target machine. 
icmp_timestamp_reply_ttl = <255 means that time to live in the IP header is less than or equal to 
255. icmp_timestamp_reply_ip_id = !0 means that the identification number in the IP header does 
not equal 0. 
 
#Module C 
icmp_addrmask_reply = n 
icmp_addrmask_reply_ttl = <255 



26 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

icmp_addrmask_reply_ip_id = !0 
 
These lines represent the results from the ICMP address mask test. icmp_addrmask_reply = n means 
that we didn’t receive an ICMP address mask reply message from the target machine. The rest of the 
variables are sent back to their default values. 
  
#Module D 
icmp_info_reply = n 
icmp_info_reply_ttl = <255 
icmp_info_reply_ip_id = !0 
 
These lines represent the results from the ICMP information request test. icmp_info_reply = n 
means that we didn’t receive an ICMP information request reply message from the target machine. 
The rest of the variables are sent back to their default values. 
 
Figure 3 is included to show the UDP header which will be referred to in the results of Module E.  
 

 
Figure 3: UDP header 

 
#Module E 
#IP_Header_of_the_UDP_Port_Unreachable_error_message 
icmp_unreach_echoed_dtsize = 8 
icmp_unreach_reply_ttl = <255 
icmp_unreach_precedence_bits = 0 
icmp_unreach_df_bit = 0 
icmp_unreach_ip_id = !0 
 
#Original_data_echoed_with_the_UDP_Port_Unreachable_error_message 
icmp_unreach_echoed_udp_cksum = OK 
icmp_unreach_echoed_ip_cksum  = BAD 
icmp_unreach_echoed_ip_id = OK 
icmp_unreach_echoed_total_len = <20 
icmp_unreach_echoed_3bit_flags = OK 
 
These lines represent the results from the ICMP port unreachable test. The first set of variables are 
from the IP header of the UDP port unreachable error message. icmp_unreach_echoed_dtsize = 8 
means that the amount of data echoed back to us with the ICMP port unreachable error message 



27 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

from the original UDP packet sent to the target machine is equal to 8 bytes. icmp_unreach_reply_ttl 
= <255 means that the time to live in the IP header is less than or equal to 255. 
icmp_unreach_precedence_bits = 0 means that the precedence flag in the IP header isn’t enabled so 
is therefore equal to 0. icmp_unreach_df_bit = 0 means that the Don’t fragment flag in the IP header 
wasn’t enabled and is therefore equal to 0. icmp_unreach_ip_id = !0 means that identification 
number in the IP header does not equal 0. 
 
The second set of variables are from the original data echoed back with the UDP port unreachable 
error message. icmp_unreach_echoed_udp_cksum = OK means that the checksum in the UDP 
header echoed back to us with the ICMP port unreachable error message from the original UDP 
packet is correct. icmp_unreach_echoed_ip_cksum  = BAD means that the checksum in the IP 
header echoed back to us with the ICMP port unreachable error message from the original UDP 
packet is incorrect. icmp_unreach_echoed_ip_id = OK means that the identification number in the 
IP header echoed back to us with the ICMP port unreachable error message from the original UDP 
packet is correct. icmp_unreach_echoed_total_len = <20 means that the total length in the IP header 
echoed back to us with the ICMP port unreachable error message from the original UDP packet is 
less than or equal to 20. icmp_unreach_echoed_3bit_flags = OK means that the 3-bit flags in the IP 
header echoed back to us with the ICMP port unreachable error message from the original UDP 
packet is correct. 
 
 

4.3 Advantages 
The Xprobe2 tool offers many advantages over other OS fingerprinting tools. Here are some reasons 
users might want to utilize this tool for its OS detection method: 
 
§ It is very quick because not many packets are sent to the remote machine. 
§ There is little target host disturbance. 
§ There is a small but growing OS signature database.  
§ There is support for network devices like routers and switches. 
§ Matrix based fingerprint matching approach is utilized. This approach is also known as 

‘’fuzzy’’ matching. 
§ Xprobe2 comes with an API that allows users to write their own modules. 

 
 

4.4 Usage Example 
The sample run was produced utilizing an OpenBSD 3.2 machine running Xprobe2 targeting a Linux 
Kernel 2.4.18 machine on the same local LAN. 
 
The following is a sample run that Xprobe2 produced: 
 
 
# xprobe2 –v –p tcp:22:open 10.10.1.5 
 
XProbe2 v.0.1 Copyright (c) 2002-2003 fygrave@tigerteam.net, ofir@sys-
security.com 
 
[+] Target is 10.10.1.5 
[+] Loading modules. 
[+] Following modules are loaded: 
 [x]ICMP echo (ping) 
 [x]TTL distance 



28 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

 [x]ICMP echo 
 [x]ICMP Timestamp 
 [x]ICMP Address 
 [x]ICMP Info Request 
 [x]ICMP port unreach 
[+] 7 modules registered 
[+] Initializing scan engine 
[+] Running scan engine 
[+] Host: 10.10.1.5 is up (Guess probability: 100%) 
[+] Target: 10.10.1.5 is alive 
[+] Primary guess: 
[+] Host 10.10.1.5 Running OS: "Linux Kernel 2.4.5 and above" (Guess 
probability: 95%) 
[+] Other guesses: 
[+] Host 10.10.1.5 Running OS: "Linux Kernel 2.2.x" (Guess probability: 95%) 
[+] Host 10.10.1.5 Running OS: "NetBSD 1.6" (Guess probability: 87%) 
[+] Host 10.10.1.5 Running OS: "Linux Kernel 2.4.0 - 2.4.4" (Guess probability: 
83%) 
[+] Host 10.10.1.5 Running OS: "SCO OpenServer Release 5" (Guess probability: 
83%) 
[+] Host 10.10.1.5 Running OS: "OpenBSD 2.5" (Guess probability: 83%) 
[+] Host 10.10.1.5 Running OS: "NetBSD 1.5.0" (Guess probability: 83%) 
[+] Host 10.10.1.5 Running OS: "NetBSD 1.5.1" (Guess probability: 83%) 
[+] Host 10.10.1.5 Running OS: "NetBSD 1.5.2" (Guess probability: 83%) 
[+] Host 10.10.1.5 Running OS: "Mac OS X 10.2.3" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "Mac OS X 10.2.4" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "Microsoft Windows ME" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "OpenBSD 2.6" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "OpenBSD 2.7" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "OpenBSD 2.8" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "OpenBSD 2.9" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 5.0" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 4.8" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 4.7" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 4.6" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 4.4" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 4.5" (Guess probability: 79%) 
[+] Host 10.10.1.5 Running OS: "Cisco IOS 12.0" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "Cisco IOS 11.3" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "Mac OS X 10.1.5" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "Microsoft Windows 98/98SE" (Guess probability: 
75%) 
[+] Host 10.10.1.5 Running OS: "Microsoft Windows NT 4 Service Pack 4 and 
Above" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "Microsoft Windows 2000/2000SP1/2000SP2/2000SP3" 
(Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "Microsoft Windows XP Professional / XP 
Professional SP1" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "Sun Solaris 5 (SunOS 2.5)" (Guess probability: 
75%) 
[+] Host 10.10.1.5 Running OS: "Sun Solaris 6 (SunOS 2.6)" (Guess probability: 
75%) 
[+] Host 10.10.1.5 Running OS: "Sun Solaris 7 (SunOS 2.7)" (Guess probability: 
75%) 
[+] Host 10.10.1.5 Running OS: "Sun Solaris 8 (SunOS 2.8)" (Guess probability: 
75%) 
[+] Host 10.10.1.5 Running OS: "Sun Solaris 9 (SunOS 2.9)" (Guess probability: 
75%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 4.3" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 4.2" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 4.1.1" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "OpenBSD 3.0" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "OpenBSD 3.1" (Guess probability: 75%) 



29 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

[+] Host 10.10.1.5 Running OS: "OpenBSD 3.2" (Guess probability: 75%) 
[+] Host 10.10.1.5 Running OS: "Digital UNIX 5.6" (Guess probability: 70%) 
[+] Host 10.10.1.5 Running OS: "HPUX B.11.0 x" (Guess probability: 70%) 
[+] Host 10.10.1.5 Running OS: "Microsoft Windows NT 4 Service Pack 3 and 
Below" (Guess probability: 70%) 
[+] Host 10.10.1.5 Running OS: "Cisco IOS 11.2" (Guess probability: 70%) 
[+] Host 10.10.1.5 Running OS: "Cisco IOS 11.1" (Guess probability: 70%) 
[+] Host 10.10.1.5 Running OS: "Mac OS 9.2.x" (Guess probability: 70%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 3.1" (Guess probability: 62%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 2.2.8" (Guess probability: 62%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 2.2.7" (Guess probability: 62%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 3.3" (Guess probability: 62%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 3.4" (Guess probability: 62%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 4.0" (Guess probability: 62%) 
[+] Host 10.10.1.5 Running OS: "FreeBSD 3.2" (Guess probability: 58%) 
[+] Cleaning up scan engine 
[+] Modules deinitialized 
[+] Execution completed. 
 
 
The Tcpdump output for the ICMP echo (ping) reachability test: 
 
17:32:30.606198 10.10.1.3 > 10.10.1.5: icmp: echo request (ttl 64, id 57271, 
len 84) 
    4500 0054 dfb7 0000 4001 1799 c0a8 0103 
    c0a8 0105 0800 f604 dfb7 0000 3eb6 e67e 
    0009 1202 0809 0a0b 0c0d 0e0f 1011 1213 
    1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 
    2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 
    3435 
17:32:30.606637 10.10.1.5 > 10.10.1.3: icmp: echo reply (ttl 64, id 53573, len 
84) 
    4500 0054 d145 0000 4001 260b c0a8 0105 
    c0a8 0103 0000 fe04 dfb7 0000 3eb6 e67e 
    0009 1202 0809 0a0b 0c0d 0e0f 1011 1213 
    1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 
    2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 
    3435 
 
 
The Tcpdump output for the TTL distance reachability test: 
 
17:32:32.811008 10.10.1.3.58999 > 10.10.1.5.22: S [tcp sum ok] 
3441493741:3441493741(0) win 0 (DF) [ttl 1] (id 3698, len 40) 
    4500 0028 0e72 4000 0106 e805 c0a8 0103 
    c0a8 0105 e677 0016 cd21 06ed 0000 0000 
    5002 0000 71ed 0000 
17:32:32.811470 10.10.1.5.22 > 10.10.1.3.58999: S [tcp sum ok] 
2022406192:2022406192(0) ack 3441493742 win 5840 <mss 1460> (DF) (ttl 64, id 0, 
len 44) 
    4500 002c 0000 4000 4006 b773 c0a8 0105 
    c0a8 0103 0016 e677 788b 7830 cd21 06ee 
    6012 16d0 5294 0000 0204 05b4 7e7e 
 
 
The Tcpdump output for the ICMP echo request test: 
 
17:32:32.821915 10.10.1.3 > 10.10.1.5: icmp: echo request (DF) [tos 0x6,ECT(0)]  
(ttl 64, id 41214, len 84) 
    4506 0054 a0fe 4000 4001 164c c0a8 0103 



30 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

    c0a8 0105 087b a3f0 b954 0001 3eb6 e680 
    000c 89f8 0809 0a0b 0c0d 0e0f 1011 1213 
    1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 
    2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 
    3435 
17:32:32.822353 10.10.1.5 > 10.10.1.3: icmp: echo reply [tos 0x6,ECT(0)]  (ttl 
64, id 53574, len 84) 
    4506 0054 d146 0000 4001 2604 c0a8 0105 
    c0a8 0103 007b abf0 b954 0001 3eb6 e680 
    000c 89f8 0809 0a0b 0c0d 0e0f 1011 1213 
    1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 
    2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 
    3435 
 
 
The Tcpdump output for the ICMP timestamp test: 
 
17:32:32.840486 10.10.1.3 > 10.10.1.5: icmp: time stamp query id 47444 seq 0 
(ttl 64, id 47444, len 40) 
    4500 0028 b954 0000 4001 3e28 c0a8 0103 
    c0a8 0105 0d00 670f b954 0000 000c d28f 
    0000 0000 0000 0000 
17:32:32.840864 10.10.1.5 > 10.10.1.3: icmp: time stamp reply id 47444 seq 0 : 
org 0xcd28f recv 0x4d36a16 xmit 0x4d36a16 (ttl 64, id 53575, len 40) 
    4500 0028 d147 0000 4001 2635 c0a8 0105 
    c0a8 0103 0e00 883c b954 0000 000c d28f 
    04d3 6a16 04d3 6a16 7e7e 7e7e 7e7e 
 
 
The Tcpdump output for the ICMP address mask test: 
 
17:32:32.855299 10.10.1.3 > 10.10.1.5: icmp: address mask request (ttl 64, id 
47444, len 32) 
    4500 0020 b954 0000 4001 3e30 c0a8 0103 
    c0a8 0105 1100 35ab b954 0000 0000 0000 
 
 
The Tcpdump output for the ICMP information request test: 
 
17:32:41.836650 10.10.1.3 > 10.10.1.5: icmp: information request (ttl 64, id 
36374, len 28) 
    4500 001c 8e16 0000 4001 6972 c0a8 0103 
    c0a8 0105 0f00 62e9 8e16 0000 
 
 
The Tcpdump output for the ICMP port unreachable test: 
 
17:32:47.771640 10.10.1.3.53 > 10.10.1.5.65535:  38585% q: A? 
www.securityfocus.com. 1/0/0 www.securityfo[|domain] (DF) (ttl 255, id 21319, 
len 104) 
    4500 0068 5347 4000 ff11 a4e4 c0a8 0103 
    c0a8 0105 0035 ffff 0054 834a 96b9 81b0 
    0001 0001 0000 0000 0377 7777 0d73 6563 
    7572 6974 7966 6f63 7573 0363 6f6d 0000 
    0100 0103 7777 770d 7365 6375 7269 7479 
    666f 
17:32:47.772159 10.10.1.5 > 10.10.1.3: icmp: 10.10.1.5 udp port 65535 
unreachable for 10.10.1.3.53 > 10.10.1.5.65535:  38585% q:[|domain] (DF) (ttl 
255, id 21319, len 104) [tos 0xc0]  (ttl 64, id 53576, len 132) 
    45c0 0084 d148 0000 4001 2518 c0a8 0105 



31 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

    c0a8 0103 0303 80bb 0000 0000 4500 0068 
    5347 4000 ff11 a4e4 c0a8 0103 c0a8 0105 
    0035 ffff 0054 834a 96b9 81b0 0001 0001 
    0000 0000 0377 7777 0d73 6563 7572 6974 
    7966 
 
 
The results are then examined and compared w ith the OS signature database. Now scores are 
calculated according to the results from each of the fingerprinting modules. Xprobe2 returns a 
primary guess which is the most probable match. It also shows other guesses. 
 
[+] Primary guess: 
[+] Host 10.10.1.5 Running OS: "Linux Kernel 2.4.5 and above" (Guess 
probability: 95%) 
[+] Other guesses: 
[+] Host 10.10.1.5 Running OS: "Linux Kernel 2.2.x" (Guess probability: 95%) 
[+] Host 10.10.1.5 Running OS: "NetBSD 1.6" (Guess probability: 87%) 
 
 
In our example, Linux Kernel 2.4.5 and above and Linux Kernel 2.2.x have received the same score. 
From Linux Kernel 2.2.x – 2.4.5 and above there are few differences in the implementation of the 
ICMP protocol. This is due to the fact that they share a very similar TCP/IP stack. 
 
 

4.5 Defenses 
There are some defensive measures to protect against the OS detection method used by Xprobe2. 
Among the defenses are: 
 
§ First, machines should be behind some sort of firewall or filtering device. Only needed ports 

should be left open, the rest should be filtered. This means that there should only be a few 
ports left open. Filtering all of the UDP ports, and not leaving any open will stop Xprobe2. 
This is a good defense since Xprobe2 needs at least one closed UDP port to work. 

§ Block ICMP traffic at the firewall. Blocked both incoming and outgoing traffic. 
§ Network Intrusion Detection Systems (NIDS) can be used, if configured correctly, to detect 

the OS detection method used by Xprobe2 because of the series of tests it performs. 



32 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

5.0 Conclusion 
After analyzing the OS detection methods in the three remote active operating system fingerprinting 
tools, I’ve come to realize that each tool works best under different circumstances. Some tools work 
better against certain network topologies or infrastructures. For instance, Nmap works best against 
remote hosts’ that have multiple open TCP and UDP ports. The RINGv2 technology is Nmap-
ringv2 works against any remote host that has at least one open TCP port. This tool will work 
against almost all network topologies. Finally, there is Xprobe2. This tool works well against remote 
hosts that allow incoming and outgoing ICMP traffic. With all this said, it’s clear that you can’t 
always rely on just one tool to remotely determine which operating system is running on the host. 



33 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

6.0 References 
Arkin, Ofir. “ICMP Usage in Scanning – The Complete Know How.” June 2001. URL: 
http://www.sys-security.com/archive/papers/ICMP_Scanning_v3.0.pdf (May 2, 2003). 
 
Arkin, and Yarochkin. “Xprobe v2.0: A “Fuzzy” Approach to Remote Active Operating System 
Fingerprinting.” August 2, 2002. URL: http://www.sys-security.com/archive/papers/Xprobe2.pdf 
(May 7, 2003). 
 
Arkin, and Yarochkin. “X remote ICMP based OS fingerprinting techniques.” August 14, 2001. 
URL: http://www.sys-security.com/archive/papers/X_v1.0.pdf (May 2, 2003). 
 
Beardsley, Tod. “SANS Intrusion Detection & Analysis Certification.” GIAC Certified Intrusion 
Analysts (GCIA). May 8, 2002. URL: http://www.giac.org/practical/Tod_Beardsley_GCIA.pdf 
(May 2, 2003). 
 
Dethy@synnergy.net. “Examining port scan methods – Analysing Audible Techniques.” URL: 
http://www.synnergy.net/downloads/papers/portscan.txt (May 2, 2003). 
 
Dwelch@phoneboy.com. “How does SYNDefender Work?” November 18, 2002. URL: 
http://www.phoneboy.com/fom-serve/cache/153.html (May 6, 2003). 
 
Fyodor. “Remote OS detection via TCP/IP Stack FingerPrinting.” June 11, 2002. URL: 
http://www.insecure.org/nmap/nmap-fingerprinting-article.html (May 2, 2003). 
 
Insecure.org. “Nmap Man Page.” URL: http://www.insecure.org/nmap/data/nmap_manpage.html 
(May 2, 2003). 
 
Miller, Toby. “ECN and it’s Impact on Intrusion Detection.” Incidents.org DETECT. May 31, 2001. 
URL: http://www.incidents.org/detect/ecn.html. (May 2, 2003). 
 
RINGv2. “RINGv2.” URL: http://ringv2.tuxfamily.org/ (May 2, 2003). 
 
Stevens, W. R. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994. 
 
Sys-Security Group. “Xprobe.” URL: http://www.sys-security.com/html/projects/X.html (May 2, 
2003). 
 
Tcpdump.org. "Tcpdump Man Page.” URL: http://www.Tcpdump.org/Tcpdump_man.html (May 
5, 2003). 
 
Veysset, Courtay, and Heen. “New Tool And Technique For Remote Operating System 
Fingerprinting.” April 2002. URL: http://www.intranode.com/fr/doc/ring-full-paper.pdf (May 2, 
2003). 



34 

Analysis of Remote Active Operating System Fingerprinting Tools 
Copyright © 2003, Ryan Spangler 

7.0 Acknowledgements 
I would like to thank the following people for reviewing the paper: 
 
§ Fyodor (fyodor@insecure.org) 
§ Ofir Arkin 
§ Olivier Courtay 

 


