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Abstract: 
 

Development of feature rich Unix parasites has been severely limited by the 
inability to reliably access functions external to the host file. Until now, it has been 
accepted as fact that utilizing libraries from within parasite code is a prohibitively 
complex task. We explore the dynamic linking mechanisms of the Executable and 
Linkable Format (ELF), and how these mechanisms can be bypassed or hijacked 
to allow parasite code access to shared objects. We demonstrate that it is not only 
possible, but also relatively simple, to load libraries and resolve symbols using a 
methodology developed within this paper. This methodology is simple to 
implement and can be utilized on any modern Unix supporting both the ELF and 
the /proc file system. Implementations of this methodology are presented for each 
of three popular Unix variants: Linux, FreeBSD and Solaris.  
 

Introduction: 
 
Recently there has been a great deal of research and active development of worms1, 
both in the public realm and within the private computer underground. The virus is 
commonly considered a close relative of the worm. Despite this close relationship and 
increasing interest in worms, Unix viruses and parasites remain a poorly researched 
subject. There are almost no published works dealing with virus techniques on the 
Unix platform.  
 
In spite of the lack of public research and documentation, Unix viruses are beginning 
to appear more frequently in the wild; recently Qualys Inc. discovered a virus that 
provides remote shell access to the infected computer2. Clearly underground interest 
in viruses is rising. 
 
The virus is just one of a class of applications commonly referred to as parasites. For 
the purposes of this paper a parasite is defined as code that is injected into a host 
executable. The most common form of parasite is, of course, the virus; however, there 
are many potential uses for parasite code: binary decryption, unpacking and copyright 
protection, to name a few. 
 
The parasite is an underdeveloped area of Unix security. Various constraints on the 
developer have hindered the development effective, complex parasites. Without a 
method of reliably loading libraries and resolving symbols, parasites are severely 
limited in their functionality. Subversive dynamic linking provides a mechanism for 
greatly expanding the capabilities of the Unix parasite, freeing developers from many 
of their previous constraints.  
 
Dynamic linking on modern Unix platforms requires significant cooperation between 
the dynamic linker and the executable. The dynamic linker and executable each take 
                                                 
1 Sometimes called “autonomous attack agents”. 
2 https://www.qualys.com/form_remoteshell.html 



on a significant share of the tasks involved with loading libraries and resolving 
symbols. The executable provides a series of complex structures that the dynamic 
linker interprets during run time to determine which libraries to load, which symbols 
to resolve, etc. Adding new elements to these structures is extremely difficult after the 
compile time link editor has produced an executable. Due to this difficulty, virus 
writers have resorted to crude, unreliable methods of utilizing library functions. 
 
The technique most frequently used involves resolving a symbol on the development 
machine and storing that memory address within the virus. During run time on the 
infected machine it is hoped that the same symbol will reside at that identical location. 
Clearly this is a fragile method, easily broken by only minor differences between run 
time environments. Additionally, this method is unable to utilize libraries not required 
by the host executable, and therefore not loaded as part of the process image. For 
instance, this limitation prevents a multi-threaded parasite from infecting a non-multi-
threaded executable whose process image would not include threading libraries. 
 
The only other technique for accessing external functions has been to utilize the 
existing dynamic linking framework of the host executable. This method limits the 
parasite to only those functions and libraries utilized by the host. This mechanism is 
most frequently used for interposing parasite functions in front of library functions, 
and almost never for acquiring functionality. There is no way for this method to work 
reliably across a large population of host executables, due to the large variations in 
library and function requirements of different executables.  
 
The only remaining option, until now, has been to provide a copy of the required 
library code within the parasite itself. This is an extremely non-optimal solution for a 
parasite for which size is frequently a major concern. A large parasite has 
significantly reduced stealth capabilities and thus an increased chance of discovery.  
 
The subversive dynamic linking methodology provides an alternative means of 
utilizing shared library functionality from within parasite code. This methodology 
enables a parasite to access functions external to the host file in a reliable manner. 
Developers are finally free to create complex parasites taking advantage of libraries 
for increased functionality. 
 
Background 
 
The following sections will introduce the ELF, on disk and in memory, as well as 
providing an overview of the dynamic linking mechanisms of the ELF.  
 
Introducing the ELF 
 
The Executable and Linkable Format, as the name suggests, provides two interfaces to 
binaries: an executable interface, and a linkable interface. The ELF header describes 
both interfaces, as well as basic information about the binary. The linkable interface is 
not required for execution; therefore, it will not be examined in this paper. The 
executable interface is described by program headers, which are stored in a program 
header table.  
 



The program headers contain information vital to the creation of a process image, 
such as the location of the dynamic linking information, and how to load the file into 
memory. The program header table is typically located immediately after the ELF 
header within the binary. Each program header describes a segment, a discrete 
sequence of bytes, as an offset from the start of the file and a size. The type field in a 
program header describes how the corresponding segment should be treated, i.e. 
loaded into memory, interpreted as a dynamic descriptor table, etc. etc. Segments 
contain the program text, data, and information defining the program’s run time 
requirements.  
 
Segments can be loadable, in which case they describe the amount of memory that 
they require as well as the permissions that they expect, or they can contain 
information about the file. This information includes which program interpreter the 
executable uses, a segment describing the program header table itself, and most 
importantly the location of the dynamic linking descriptor table. The dynamic 
descriptor table is an array of simple structures that provide details of the run time 
environment of the ELF.  
 
The dynamic structures each have a tag value describing how their contents should be 
interpreted. These contents can be interpreted as either a pointer or an integer value. 
The tags most important to dynamic linking all contain pointers. Pointers reference 
the dynamic symbol table, the dynamic string table, and the various other objects 
required. These other objects, which enable the transfer of control to external 
functions and access to external variables, will be described in the section “An 
introduction to ELF dynamic linking”. 
 
Process creation and runtime ELF layout  
 
This section will explore how an ELF binary on disk is transformed into a running 
process in memory, and the layout of that memory image. An ELF executable is 
translated into a process image by the program loader. To create a process image the 
program loader will map all the loadable segments into memory using the mmap() 
system call, along with the loadable segments of any required libraries. After creating 
the process image the program loader will transfer execution control to the entry point 
of the primary ELF object.  
 
Executables expect to be loaded at a fixed address3 chosen by the link editor during 
compile time. ELF executables are mapped in at known memory locations, allowing 
the compile time linker to relocate local text and data objects. Executables need to be 
loaded at their chosen location in order to function correctly. Libraries might be 
mapped into a process image at any location; therefore, shared objects contain 
relocation tables to allow the dynamic linker to do last minute fix ups. Additionally, 
shared objects frequently contain position independent code (PIC). PIC uses local 
structures with the ELF image to reference external text and data objects whose 
location cannot be known until run time.  
 

                                                 
3 This fixed address is usually 0x8048000 for i386 binaries, 0x10000 for 32bit SPARC v8 binaries and 
0x100000000 for 64bit SPARC v9 binaries. 



Loadable segments of the file are not only described by their file size, but also by the 
size of the memory segment that they will occupy. This run time size must be rounded 
up to the nearest memory page. Since most loadable segments are not exact multiples 
of the page size, they will be padded out in memory. The padding content is the 
surrounding portions of the file. This padding preserves the headers, both ELF and 
program, at the base of the first memory segment. This preservation allows the 
memory image to be interpreted as an ELF object. The ability to examine a process 
image as a collection of ELF objects is what enables traditional, and subversive, 
dynamic linking. 
 
An introduction to ELF dynamic linking 
 
Successful creation and execution of a process image requires more than simply 
memory layout information. Provisions for referencing objects whose absolute 
addresses are not known to the compile time link editor are required. These provisions 
enable code objects (functions) and data objects (extern variables) to be referenced 
between ELF memory maps within a process image. This referencing is, of course, 
dynamic linking. The runtime link editor (rtld) provides dynamic linking 
functionality, loading shared objects and resolving symbol references. Frequently 
installed as ld.so the dynamic linker might be either a shared object itself, or an 
executable. 
 
Symbol resolution during run time is a complex and elaborate process involving 
significant co-operation between the executable, the libraries and the dynamic linker. 
The mechanisms used are unique to each of our target architectures; however, both 
i386 and SPARC share some common structures and methods. A description of these 
shared structures follows below. 
 
Each object made available to another ELF is described by a symbol entry within the 
symbol table. A symbol entry is in fact a symbol structure detailing the name of the 
symbol, and providing a value for the symbol. The symbol name is encoded as an 
index into the dynamic string table. The value of a symbol is the address of that 
symbol within the ELF object.  This address usually needs to be relocated with the 
base load address of the object to determine the absolute memory address of the 
symbol. Executables know what their load address will be during runtime and so their 
internally referencing symbols are relocated at compile time. 
 
The global offset table (GOT) is an array, located within the data segment of an ELF 
image, which contains pointers to objects, generally data objects. The dynamic linker 
will fix up GOT entries, for which it has symbol entries, while loading the data 
segment. To access a variable whose location is not known during compilation the 
ELF can dereference pointers contained within the local GOT. The GOT also plays an 
important role in i386 dynamic linking. 
 
The procedure linkage table (PLT) is a structure whose entries contain code fragments 
that transfer control to external procedures. The PLT and its code fragment entries 
have the following format on the i386 architecture: 
 
 
 



 
 PLT0: 
   push GOT[1] ; word of identifying information 
   jmp GOT[2] ; pointer to rtld function 
   nop 
   ... 
 PLTn:  jmp GOT[x + n] ; GOT offset of symbol address 
   push n  ; relocation offset of symbol 
   jmp PLT0  ; call the rtld  
 
 PLTn + 1 jmp  GOT[x +n +1]; GOT offset of symbol address 
   push  n +1  ; relocation offset of symbol 
   jmp PLT0  ; call the rtld  
 

 
 
When an executable transfers control to an external function, it passes execution to 
the PLT entry set up for that symbol by the compile time link editor. The first 
instruction in that PLT entry will jump to a pointer stored in the GOT; which, if the 
symbol hasn’t been resolved, will contain the address of the next instruction within 
the PLT entry. This instruction pushes an offset in the relocation table onto the stack, 
and the next instruction passes execution to the zero entry in the PLT. The zero entry 
contains code that calls the run time link editor’s symbol resolution function. This is 
achieved using the address of a function within the dynamic link editor, inserted into 
the second GOT entry by the program loader.  
 
The dynamic linker will unwind the stack and retrieve the information needed to 
locate the relocation table entry. The relocation entry is used, in conjunction with the 
symbol and string tables, to determine which symbol the PLT entry refers to, and 
where that symbol’s address should be stored in private memory. This symbol is 
resolved, if possible, and the address located is stored in the GOT entry used by the 
PLT entry. The next time the symbol is requested the GOT pointer will contain the 
address of the symbol. Thus all subsequent calls will transfer control via the GOT. 
The dynamic linker only resolves a symbol when it is first referenced by the binary; 
this is referred to as lazy loading. This lazy loading methodology of symbol resolution 
is the default for all ELF implementations. 
 
In addition to the symbol table, the global offset table, the procedure linkage table, 
and the string table, ELF objects also contain a hash table and chain to make resolving 
symbols easier for the dynamic linker. The hash table and the chain, is used to rapidly 
determine which entries in the symbol table might correspond to a requested symbol 
name. This hash table is stored, along with an accompanying chain, as an array of 
integers. The hash table reserves the first two positions for a count of the buckets 
within the hash table, and a count of the elements in the chain, respectively. The hash 
table itself directly mirrors the symbol table both in the number of elements and in 
their order.   
 
The dynamic linking structures provide all dynamically linked executables with 
implicit access to the dynamic linker; however, explicit access is also available. 
Dynamic linking, the loading of shared objects and the resolution of symbols, can be 
accomplished via directly accessing the run time link editor with the functions: 
dlopen(), dlsym() and dlclose(). These functions are contained within the 



dynamic linker itself. The dynamic linking library (libdl) needs to be linked into the 
executable in order to access these functions. This library contains stub functions to 
allow the compile time link editor to resolve the function references; however these 
stub functions simply return zero. Because the actual functionality resides within the 
dynamic linker, shared object loading will fail if called from a statically linked ELF 
binary. 
 
The information required to implement dynamic linking is: the hash table, the number 
of hash table elements, the chain, the dynamic string table and the dynamic symbol 
table. Given this information, the following algorithm will provide the address of any 
symbol: 
 
 
1. hn = elf_hash(sym_name) % nbuckets; 
 
2. for (ndx = hash[ hn ]; ndx; ndx = chain[ ndx ]) { 
3. symbol = sym_tab + ndx; 
 
4. if (strcmp(sym_name, str_tab + symbol->st_name) == 0) 
5.  return (load_addr + symbol->st_value); 
  } 
 
 
The hash number is computed from the value of the return of elf_hash(), defined in 
the ELF specification4, modulo the number of elements in the hash table (line 1). This 
number is used to reference into the hash table and discover the index of the first of 
the chain of symbols whose names match that hash value (line 2). Using this index, 
the symbol is retrieved from the symbol table (line 3). The requested symbol name is 
compared against the name of the retrieved symbol (line 4). If there is a match, then 
the location of the symbol, appended to the load address of the object, is the address 
of the requested symbol (line 5). If, however, there is not a match, then the chain is 
followed until there are no more index values (line 2). Additional checks for symbol 
type, i.e. data object vs. code object, as well as error checking have been left out for 
the sake of clarity. Using this algorithm, it is a simple matter to resolve arbitrary 
symbols to absolute locations in memory.  
 
Examining Processes via procfs 

 
Modern Unix systems provide two different methods for examining a process5. The 
POSIX standard compliant method of process inspection is the ptrace() system call, 
which provides crude, very limited, access to the memory image of a process. A far 
superior process examination mechanism is the proc file system, commonly called 
procfs, or /proc. This file system is typically available on all modern Unix systems. 
 
The proc file system provides access to a process via existing file system primitives 
(open(), read(), etc. etc.) allowing any application to easily examine the state of an 

                                                 
4 The Intel Corporation, "Tools Interface Standards: Portable Formats Specification Version 1.1 Vol 1, 
ELF:Executable and Linkable Format" pg 2-19 
5 We differentiate between process examination, looking at process memory, and debugging, 
manipulating the process under inspection. 



arbitrary process. Under the procfs directory /proc each process on the system has a 
directory. Each directory name is the process identification (pid) of a process. 
Additionally, there is usually a special directory, self, that is a symbolic link to the 
current process’ directory entry. Thus a process can examine itself using /proc/self 
to locate the procfs information. 
 
The exact layout and format for procfs files is operating system dependant; however, 
there is typically a file describing the current state of the process (i.e. running, 
waiting, zombie); another file that corresponds to the binary used to create the process 
image; a file which gives access to the address space of the process and, most 
important to subversive linking, a file describing the memory maps of the process 
image.   
 
Subversive Dynamic Linking Theory 
 
Subversive dynamic linking is not based on loading libraries, but rather on locating 
existing procedures that perform this function. The dynamic link editor has to contain 
functions providing library loading. It is simply a matter of locating and utilizing 
these functions. The methodology is therefore: 
 
 
 
1) Locate the ELF object providing the library loading functions 
2) Locate the functions that load and unload shared objects 

a) (Optional) locate the function that resolves symbols 
3) Provide shared object loading, unloading and symbol resolution 
 
 
The first step is the most complex and difficult. The parasite must examine the 
process image of its host and discover which memory map corresponds to the 
required object. This is made possible with the aid of the proc file system, and some 
intimate ELF knowledge6. Parsing the procfs “maps” file is easily accomplished with 
only a few helper functions. The challenge is to determine which of the many memory 
maps that constitute a process image corresponds to the correct ELF object. The 
mechanism of determining which memory map is the run time dynamic linker is 
unique within each of the implementations, and thus will be described within the 
appropriate section. 
 
The second step, locating the shared object loading and unloading functions, requires 
resolving the symbols dlopen() and dlclose()into absolute addresses within the 
ELF object. Resolving a symbol within an ELF object is quite simple, provided that 
there is access to the dynamic linking information: namely, the hash table, the symbol 
table and the string table. This information can easily be extracted from the dynamic 
segment, which, in turn, can be easily found using the ELF header located at the base 
address of the memory map. Thus, resolving the necessary symbols requires only the 
base load address of the target object.  
 
                                                 
6 While possible to do without the procfs, it is significantly more reliable with this process examination 
aide. 



The same object that manages loading libraries usually also resolves symbols within 
those libraries. This is typically the case, allowing the parasite to resolve the symbol 
dlsym() within the same memory map as the other dynamic linking functions. When 
the object that loads libraries doesn’t resolve symbols, two options present 
themselves: either locate the dlsym() function within another ELF object, or provide 
symbol resolution functionality within the parasite code. The subversive linking 
implementation utilizes the second option because code to resolve symbols must 
already exist in order to locate the initial library loading functions.   
 
The third, and final, step involves managing the information obtained during the first 
two steps, as well as any additional information gathered during run time. This data 
management can be accomplished in numerous ways. The mechanism chosen for the 
current implementations of the subversive linking methodology is a linked list whose 
nodes are stored on the heap. Storing data on the heap allows persistence throughout 
the execution lifetime of the parasite, as well as dynamic memory management.  
 
The primary purpose of subversive linking is to provide access to the library loading 
functions, and to resolve symbols. This is accomplished through function pointers to 
the dlopen() and dlsym() procedures. These pointers, as well as pointers to the heap 
management functions malloc() and free(), can be stored in a structure. An 
opaque pointer to this structure can be managed by the parasite, which then passes it 
to each subversive dynamic linking function call. The pointers returned by the 
dlopen() function can be stored in a linked list, attached to the initial management 
structure, as well as returned to the parasite for later calls to dlsym(). Garbage 
collection is then a simple matter of traversing the linked list and dlclose()ing each 
loaded library, and free()ing the list node. The host’s process image can thus be 
returned to its original pristine state in a painless and simple manner. 
 
Implementation details 
 
Having explained the theory we turn now to the practice of subversive dynamic 
linking. The following sections will examine the specifics of implementing the 
subversive dynamic linking methodology on each of three Unix platforms: Linux, 
FreeBSD and Solaris. 
 
Linux 
 
The first step of the methodology requires knowing which ELF object provides shared 
object loading functionality. Under Linux, the object that provides this functionality is 
the GNU C library (glibc). The actual function dlopen()contained within libdl is 
actually a wrapper for the glibc function _dl_open(). Therefore, the object that 
needs to be located for the first step of subversive dynamic linking is glibc.  
 
Locating the memory map that corresponds to the text segment of glibc involves 
searching the host’s memory image. The file /proc/self/maps provides access to the 
memory maps of the process. This file is comprised of ASCII strings, having the 
format: 
 
/* addr range    prot  offset  dev   inode         path name    */ 
4001b000-400ff00 r-xp 00000000 03:01 390597 /lib/libc-2.1.3.so 



 
The first field is the base load address of the object, followed by the upper limit of the 
memory map. This field is followed by a description of the protection on that map, 
read, write, execute and private (copy on write), represented by r w x and p, 
respectively. The next three fields are meaningless to subversive linking, the offset, 
device major and minor number, and the file system inode number. The last entry is 
most interesting, the full path name of the source file for the object mapped into 
memory.  
 
The inclusion of the path name of the object allows glibc to be located using only 
strcmp(). The mechanism for locating the library is thus a simple string extraction 
and string-searching algorithm. 
 
 
1. for (i = 0; i < nread; i++) { 
 
2. start = end = buffer + i; 
 
3. while ((*end++ != ‘\n’) && (*end) && (i++ < nread))  
  ; 
 
4. *end = 0; 
 
5. for (ptr = end; (ptr > start) && (*ptr != ‘ ‘); ptr--) 
6.   if ((*ptr == *lib_name)) && 
7.           (strncmp(ptr, lib_name, strlen(lib_name)) == 0)) 
8.               return ((void *)strtol(start, NULL, 16)); 
  } 
 
 
The buffer is a character array filled by a read()with the contents of the file 
/proc/self/maps. The number of bytes read is stored in nread. The buffer is iterated 
through until we run out of bytes (line 1). A standing pointer to the start of the string 
and a walking pointer, used to locate the end of the string, are both initialized to the 
current location within the buffer (line 2).    
 
This algorithm is searching for strings; therefore, strings need to be extracted from an 
arbitrary sequence of bytes. For the purposes of this algorithm, strings are defined as 
sequences of bytes terminated by a new line character (‘\n’), or an ASCII NUL 
(‘\0’). Extracting a string from an arbitrary stream of bytes is made possible by 
searching for an end of string character, as well as error checking for the end of the 
buffer (line 3). The string is NUL terminated (line 4) to increase the speed of the 
strncmp() below. 
 
After being extracted, a string is searched for the requested object’s name. The search 
is accomplished by pointing to the end of the extracted string and walking backward 
until the first word separation character (‘ ‘) is found, or the start of the string is 
reached (line 5). As an optimization, before incurring the overhead of a function call, 
the first char of each work is compared. If these match, then a strncmp() is likely to 
be useful (line 6). The current pointer is compared against the requested name, and if 
there is a match the string searching is over (line 7). If the string matches the 



requested library name, then the start of the string is an ASCII hexadecimal 
representation of the load address that needs to be converted into a pointer for later 
manipulation and interpretation. This conversion is done by casting the return of the 
function strtol() to a pointer7 (line 8).   
 
The dlsym() function, normally used to convert a symbolic reference into an absolute 
memory location, in something unique to Linux, is actually contained within libdl. 
This lack of ready access to dlsym() is not a big a problem.  The same functions used 
to locate and hijack the GNU C library can be reused to locate any shared object that 
has been loaded into the process image. 
 
FreeBSD 
 
The FreeBSD implementation of the dynamic link editor provides its own ELF object 
loading, as well as its own symbol resolution functionality. Satisfying the first step of 
the methodology on FreeBSD requires locating the dynamic linker as this ELF object 
contains the functions dlopen(), dlclose() and dlsym(). Locating the load address 
of the run time linker is the first step towards resolving these symbols.  
 
Scouring the memory maps of a process can be easily accomplished with information 
retrieved from the procfs. FreeBSD procfs provides a process access to information 
about itself via the directory: /proc/curproc. The file providing information about 
memory maps within the process is map. Thus, a parasite can access the memory map 
information of its host via /proc/curproc/map. The information is stored as a series 
of ASCII strings having the following format.  
 
/* start  end            real      prot       priv        type */ 
0x804800 0x805500 13 15 0xc6e18960 r-x 21 0x0 COW NC vnode 
 
The first and second fields in the string contain the start and end address of a memory 
range. The remaining entries store a representation of the segment’s protection, along 
with additional information potentially of interest to a parasite; however, it is of no 
interest to the subversive dynamic linking methodology presented in this paper. 
 
The mechanism used to determine which memory map corresponds to the dynamic 
linker requires access to the Global Offset Table (GOT). The location of the GOT is 
contained within the dynamic linking structures. The structure with the tag DT_PLTGOT 
gives the address of the GOT, allowing the dynamic linker to implement traditional 
ELF dynamic linking  
 
The zero entry in the GOT array is reserved to hold the address of the dynamic linking 
structures; this is for the convenience of the dynamic linker itself. The first and 
second entries are reserved on the i386. The i386 ELF specification supplement 
defines the first entry, GOT[1], as a “word of identifying information”. This 
identifying information is a pointer to the dynamic linker’s private structure 
describing the ELF object’s memory map. This information is potentially useful to a 
parasite in many ways, but not to this subversive linking implementation. The second 
entry, GOT[2], is a pointer to a function within the dynamic link editor. This function 
                                                 
7 C language longs and pointers are the same size on both 32 bit (ILP32) and 64 bit (LP64) 
architectures. 



provides the entry point into the run time linker’s symbol resolution procedures. This 
pointer is the key to locating the dynamic linker among the many memory maps of the 
process image. Locating which memory map range the pointer references into makes 
it possible to determine the load address of the dynamic linker.  
 
 
1. rtld_func = (char *)((int *)got)[2]; 
 
2. for (i = 0, ptr = buffer; (i < nread) && (*ptr); i++, ptr++) { 
  
3. start = buffer + i; 
 
4. load_base = (char *)strtol(start, &end, 16); 
  
5. if (rtld_func < load_base) { 
6.  while ((*ptr++ != ‘\n’) && (*ptr) && (i++ < nread)) 
   ; 

 continue; 
 } 
  
7. load_high = (char *)strtol(++end, NULL, 16); 
  
8. if (rtld_func < load_high) 
9.  return (load_base); 
  } 
 
    
The pointer to the run time link editor is extracted from the second entry in the global 
offset table (line 1). The character array buffer has been filled with the contents of 
/proc/curproc/maps. These contents are treated as strings: byte arrays of arbitrary 
lenght terminated with a new line or a NUL. Each of these strings needs to be 
converted into memory locations, and the rtld pointer compared against this memory 
range. The strings are iterated through (line 2). The pointer start is initialized to the 
current string location within the buffer. The start of the string is converted into a 
pointer by the strtol() function (line 4). If the location of the dynamic linking 
function is lower than the load base of the current map (line 5), then the next string is 
extracted and loop continues (line 6). Otherwise, the highest location of the memory 
map is retrieved (line 7). If the pointer is lower than the maximum range of the map 
(line 8), then the pointer falls within the memory map and the base load address is 
returned (line 9). 
 
After locating the load address of the dynamic linker, it is merely a matter of 
resolving the requisite functions and managing the run time data as suggested above. 
 
Solaris 
 
The Solaris run time link editor provides its own dlopen(), dlsym() and 
dlclose(). Thus, the dynamic linker is the object that needs to be located and parsed 
in order to satisfy the first step of the subversive linking methodology. 
 



The Solaris procfs file /proc/self/map is comprised of an arbitrary number of 
prmap_t structures. These structures, defined in procfs.h, each describe a memory 
map and contain, among other things, the start address and size of the memory map. A 
method similar to that employed under FreeBSD must be used to determine which 
memory map corresponds to the dynamic linker. A pointer to a run time link editor 
function is located and the memory maps searched for the correct address range. 
 
The SPARC Procedure Linkage Table (PLT) is stored in private memory as the link 
editor directly modifies it. The GOT plays no part in symbol resolution. The first four 
PLT entries are reserved for the dynamic link editor. The zero entry contains a small 
stub function to call the run time linker’s symbol resolution routines, and the first 
entry contains a “word of identifying information”. The second and third entries are 
used for 64bit programs, but the logic employed remains the same. The stub function 
creates a register window, and then calls a dynamic linker procedure. This procedure 
is the entry point into the link editor’s run time symbol resolution functions. 
 
Each entry in the PLT is twelve bytes long, which allows for three SPARC opcodes. 
The format of SPARC opcodes requires some explanation, as it is central to the 
locating of the dynamic linker. All SPARC opcodes are four bytes long, and are one 
of four possible types; called formats, viz. format 1, format 2, etc. These formats are 
differentiated by the first two bits of the opcode. The call opcode, which transfers 
control to a location in memory, is the only format 1 instruction.  
 
The SPARC transfer control instructions, i.e. branches and calls, are relative to the 
current position of the program counter, or instruction pointer. This allows the code to 
be easily relocated in memory without relocation fix ups. The call opcode adds a 
signed 32bit displacement to the program counter, and thus transfers control. Since all 
SPARC control transfer operations are aligned on four byte boundaries, because all 
opcodes are four bytes long, the lower two bits of the displacement will be zero. The 
32bit displacement can thus be stored as a 30bit number, allowing the most significant 
two bits to be recovered to indicate the opcode type.  
 
Recovering the pointer is possible by extracting the information from the call opcode 
that actually transfers control to the dynamic linker. The second instruction (1-
indexed, i.e. the 4th byte) in the zero entry of the procedure linkage table (PLT0) is the 
relevant call instruction. Extracting this pointer requires reclaiming the 32bit offset, 
accomplished by shifting the opcode left two places; this discounts the opcode type 
information stored in the most significant two bits. The offset can then be added to the 
address of the call instruction (PLT0 + 4), which would be the value of the program 
counter under normal circumstances, to locate the absolute memory location of the 
dynamic linker’s symbol resolution function. This absolute memory location can then 
be checked to see which memory map address range it falls into, and the base load 
address of the dynamic linker can thus be determined. 



 
 
1. rtld_func = (char *) &plt[1]; 
2. rtld_func += (char *) (plt[1] << 2); 
 
3. for (prmap = buf; prmap < buf + sizeof buf; prmap++) 
4. if ((rtld_func > (char *)prmap->pr_vaddr) &&  
5.  (rtld_func < (char *)(prmap->pr_vaddr + prmap->pr_size))) 
6.   return (prmap->pr_vaddr); 
 
 
The address of the call instruction in the zero entry is stored in rtld_func, which 
then acts as a pseudo-program counter (line 1). The 32bit displacement of the call 
instruction is then extracted and added to the pseudo-program counter to locate the 
absolute memory address of the dynamic link’s function (line 2). The byte array buf 
is filled with the contents of /proc/self/map: an array of prmap_t structures.  This 
array of structures is iterated through (line 3), and each structure’s address range is 
checked to see if it includes the address of the rtld function. First, the base address of 
the memory map is checked, if the rtld function is lower than the base address, then 
the next structure is checked (line 4). If the location of the function is higher than the 
base address, and lower than the highest address (line 5), then the base address of the 
map is the load address of the dynamic linker. This load address is returned (line 6). 
 
After locating the load address of the dynamic linker, it is merely a matter of 
resolving the requisite functions and managing the run time data as suggested above. 
 
Conclusion 
 
We have demonstrated the importance of dynamic linking for parasite code, and how 
a reliable mechanism of utilizing libraries greatly enhances parasite functionality. The 
methodology provided involved using platform specific algorithms to determine the 
memory address of the dlopen() function within the already loaded dynamic linker. 
With sample implementations for Linux, FreeBSD and Solaris we have demonstrated 
that this method is legitimate and portable. Thus, the threat of under-featured parasites 
has been ended forever. 
 
Appendices 
Appendix A: ELF Headers 
 
The format of an ELF header is as follows: 
 
#define EI_NIDENT (16) 
 
typedef struct 
{ 
  unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */ 
  Elf32_Half    e_type;       /* Object file type */ 
  Elf32_Half    e_machine;    /* Architecture */ 
  Elf32_Word    e_version;    /* Object file version */ 
  Elf32_Addr    e_entry;      /* Entry point virtual address */ 
  Elf32_Off     e_phoff;      /* Program header table file offset */ 
  Elf32_Off     e_shoff;      /* Section header table file offset */ 



  Elf32_Word    e_flags;      /* Processor-specific flags */ 
  Elf32_Half    e_ehsize;     /* ELF header size in bytes */ 
  Elf32_Half    e_phentsize;  /* Program header table entry size */ 
  Elf32_Half    e_phnum;      /* Program header table entry count */ 
  Elf32_Half    e_shentsize;  /* Section header table entry size */ 
  Elf32_Half    e_shnum;      /* Section header table entry count */ 
  Elf32_Half    e_shstrndx;   /* Section header string table index */ 
} Elf32_Ehdr; 
 
The format of an ELF program header is as follows: 
 
typedef struct 
{ 
  Elf32_Word    p_type;               /* Segment type */ 
  Elf32_Off     p_offset;             /* Segment file offset */ 
  Elf32_Addr    p_vaddr;              /* Segment virtual address */ 
  Elf32_Addr    p_paddr;              /* Segment physical address */ 
  Elf32_Word    p_filesz;             /* Segment size in file */ 
  Elf32_Word    p_memsz;              /* Segment size in memory */ 
  Elf32_Word    p_flags;              /* Segment flags */ 
  Elf32_Word    p_align;              /* Segment alignment */ 
} Elf32_Phdr; 

 
The format of an ELF dynamic linking structure is as follows: 
 
typedef struct 
{ 
  Elf32_Sword   d_tag;                  /* Dynamic entry type */ 
  union 
    { 
      Elf32_Word d_val;                 /* Integer value */ 
      Elf32_Addr d_ptr;                 /* Address value */ 
    } d_un; 
} Elf32_Dyn;      
 
 
Appendix B: Generic ELF image parser 
 
  
ehdr = load_addr; 
phdr = load_addr + ehdr->e_phoff 
 
for (i = 0; i < ehdr->e_phnum; i++, phdr++)  
 if (phdr->p_type == PT_DYNAMIC) 
  break; 
 
dyn = load_addr + phdr->p_vaddr; 
 
for (; dyn->d_tag; dyn++) { 
 switch(dyn->d_tag) { 
 case DT_STRTAB: 
  str_tab = load_addr + dyn->d_ptr; 
  break; 
 case DT_SYMTAB: 
  sym_tab = load_addr + dyn->d_ptr; 
  break; 
 case DT_HASH: 
  { 



   Elf32_Word *p; 
 
   p = load_addr + dyn->d_ptr; 
    
   nbuckets = *p++; 
   nchains = *p++; 
   hash = p; 
   chain = p + nbuckets; 
  } 
  break; 
 default: 
  break; 
 } 
} 
 
 
Appendix C: Generic dynamic linker locator  
 
ehdr = BASE_ADDR; 
phdr = ehdr + ehdr->e_phoff; 
 
for (i = 0; i < ehdr->e_phnum; i++, phdr++) 
 if (phdr->p_type == PT_DYNAMIC) 
  break; 
 
dyn = phdr->p_vaddr; 
 
for (; dyn->d_tag; dyn++) 
 if (dyn->d_tag == DT_PLTGOT) 
  pltgot = dyn->d_ptr; 
 
load_addr = locate_rtld(pltgot); 
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