
Cheating the ELF
Subversive Dynamic Linking to Libraries

the grugq

Abstract:

Development of feature rich Unix parasites has been severely limited by the
inability to reliably access functions external to the host file. Until now, it has been
accepted as fact that utilizing libraries from within parasite code is a prohibitively
complex task. We explore the dynamic linking mechanisms of the Executable and
Linkable Format (ELF), and how these mechanisms can be bypassed or hijacked
to allow parasite code access to shared objects. We demonstrate that it is not only
possible, but also relatively simple, to load libraries and resolve symbols using a
methodology developed within this paper. This methodology is simple to
implement and can be utilized on any modern Unix supporting both the ELF and
the /proc file system. Implementations of this methodology are presented for each
of three popular Unix variants: Linux, FreeBSD and Solaris.

Introduction:

Recently there has been a great deal of research and active development of worms1,
both in the public realm and within the private computer underground. The virus is
commonly considered a close relative of the worm. Despite this close relationship and
increasing interest in worms, Unix viruses and parasites remain a poorly researched
subject. There are almost no published works dealing with virus techniques on the
Unix platform.

In spite of the lack of public research and documentation, Unix viruses are beginning
to appear more frequently in the wild; recently Qualys Inc. discovered a virus that
provides remote shell access to the infected computer2. Clearly underground interest
in viruses is rising.

The virus is just one of a class of applications commonly referred to as parasites. For
the purposes of this paper a parasite is defined as code that is injected into a host
executable. The most common form of parasite is, of course, the virus; however, there
are many potential uses for parasite code: binary decryption, unpacking and copyright
protection, to name a few.

The parasite is an underdeveloped area of Unix security. Various constraints on the
developer have hindered the development effective, complex parasites. Without a
method of reliably loading libraries and resolving symbols, parasites are severely
limited in their functionality. Subversive dynamic linking provides a mechanism for
greatly expanding the capabilities of the Unix parasite, freeing developers from many
of their previous constraints.

Dynamic linking on modern Unix platforms requires significant cooperation between
the dynamic linker and the executable. The dynamic linker and executable each take

1 Sometimes called “autonomous attack agents”.
2 https://www.qualys.com/form_remoteshell.html

on a significant share of the tasks involved with loading libraries and resolving
symbols. The executable provides a series of complex structures that the dynamic
linker interprets during run time to determine which libraries to load, which symbols
to resolve, etc. Adding new elements to these structures is extremely difficult after the
compile time link editor has produced an executable. Due to this difficulty, virus
writers have resorted to crude, unreliable methods of utilizing library functions.

The technique most frequently used involves resolving a symbol on the development
machine and storing that memory address within the virus. During run time on the
infected machine it is hoped that the same symbol will reside at that identical location.
Clearly this is a fragile method, easily broken by only minor differences between run
time environments. Additionally, this method is unable to utilize libraries not required
by the host executable, and therefore not loaded as part of the process image. For
instance, this limitation prevents a multi-threaded parasite from infecting a non-multi-
threaded executable whose process image would not include threading libraries.

The only other technique for accessing external functions has been to utilize the
existing dynamic linking framework of the host executable. This method limits the
parasite to only those functions and libraries utilized by the host. This mechanism is
most frequently used for interposing parasite functions in front of library functions,
and almost never for acquiring functionality. There is no way for this method to work
reliably across a large population of host executables, due to the large variations in
library and function requirements of different executables.

The only remaining option, until now, has been to provide a copy of the required
library code within the parasite itself. This is an extremely non-optimal solution for a
parasite for which size is frequently a major concern. A large parasite has
significantly reduced stealth capabilities and thus an increased chance of discovery.

The subversive dynamic linking methodology provides an alternative means of
utilizing shared library functionality from within parasite code. This methodology
enables a parasite to access functions external to the host file in a reliable manner.
Developers are finally free to create complex parasites taking advantage of libraries
for increased functionality.

Background

The following sections will introduce the ELF, on disk and in memory, as well as
providing an overview of the dynamic linking mechanisms of the ELF.

Introducing the ELF

The Executable and Linkable Format, as the name suggests, provides two interfaces to
binaries: an executable interface, and a linkable interface. The ELF header describes
both interfaces, as well as basic information about the binary. The linkable interface is
not required for execution; therefore, it will not be examined in this paper. The
executable interface is described by program headers, which are stored in a program
header table.

The program headers contain information vital to the creation of a process image,
such as the location of the dynamic linking information, and how to load the file into
memory. The program header table is typically located immediately after the ELF
header within the binary. Each program header describes a segment, a discrete
sequence of bytes, as an offset from the start of the file and a size. The type field in a
program header describes how the corresponding segment should be treated, i.e.
loaded into memory, interpreted as a dynamic descriptor table, etc. etc. Segments
contain the program text, data, and information defining the program’s run time
requirements.

Segments can be loadable, in which case they describe the amount of memory that
they require as well as the permissions that they expect, or they can contain
information about the file. This information includes which program interpreter the
executable uses, a segment describing the program header table itself, and most
importantly the location of the dynamic linking descriptor table. The dynamic
descriptor table is an array of simple structures that provide details of the run time
environment of the ELF.

The dynamic structures each have a tag value describing how their contents should be
interpreted. These contents can be interpreted as either a pointer or an integer value.
The tags most important to dynamic linking all contain pointers. Pointers reference
the dynamic symbol table, the dynamic string table, and the various other objects
required. These other objects, which enable the transfer of control to external
functions and access to external variables, will be described in the section “An
introduction to ELF dynamic linking”.

Process creation and runtime ELF layout

This section will explore how an ELF binary on disk is transformed into a running
process in memory, and the layout of that memory image. An ELF executable is
translated into a process image by the program loader. To create a process image the
program loader will map all the loadable segments into memory using the mmap()
system call, along with the loadable segments of any required libraries. After creating
the process image the program loader will transfer execution control to the entry point
of the primary ELF object.

Executables expect to be loaded at a fixed address3 chosen by the link editor during
compile time. ELF executables are mapped in at known memory locations, allowing
the compile time linker to relocate local text and data objects. Executables need to be
loaded at their chosen location in order to function correctly. Libraries might be
mapped into a process image at any location; therefore, shared objects contain
relocation tables to allow the dynamic linker to do last minute fix ups. Additionally,
shared objects frequently contain position independent code (PIC). PIC uses local
structures with the ELF image to reference external text and data objects whose
location cannot be known until run time.

3 This fixed address is usually 0x8048000 for i386 binaries, 0x10000 for 32bit SPARC v8 binaries and
0x100000000 for 64bit SPARC v9 binaries.

Loadable segments of the file are not only described by their file size, but also by the
size of the memory segment that they will occupy. This run time size must be rounded
up to the nearest memory page. Since most loadable segments are not exact multiples
of the page size, they will be padded out in memory. The padding content is the
surrounding portions of the file. This padding preserves the headers, both ELF and
program, at the base of the first memory segment. This preservation allows the
memory image to be interpreted as an ELF object. The ability to examine a process
image as a collection of ELF objects is what enables traditional, and subversive,
dynamic linking.

An introduction to ELF dynamic linking

Successful creation and execution of a process image requires more than simply
memory layout information. Provisions for referencing objects whose absolute
addresses are not known to the compile time link editor are required. These provisions
enable code objects (functions) and data objects (extern variables) to be referenced
between ELF memory maps within a process image. This referencing is, of course,
dynamic linking. The runtime link editor (rtld) provides dynamic linking
functionality, loading shared objects and resolving symbol references. Frequently
installed as ld.so the dynamic linker might be either a shared object itself, or an
executable.

Symbol resolution during run time is a complex and elaborate process involving
significant co-operation between the executable, the libraries and the dynamic linker.
The mechanisms used are unique to each of our target architectures; however, both
i386 and SPARC share some common structures and methods. A description of these
shared structures follows below.

Each object made available to another ELF is described by a symbol entry within the
symbol table. A symbol entry is in fact a symbol structure detailing the name of the
symbol, and providing a value for the symbol. The symbol name is encoded as an
index into the dynamic string table. The value of a symbol is the address of that
symbol within the ELF object. This address usually needs to be relocated with the
base load address of the object to determine the absolute memory address of the
symbol. Executables know what their load address will be during runtime and so their
internally referencing symbols are relocated at compile time.

The global offset table (GOT) is an array, located within the data segment of an ELF
image, which contains pointers to objects, generally data objects. The dynamic linker
will fix up GOT entries, for which it has symbol entries, while loading the data
segment. To access a variable whose location is not known during compilation the
ELF can dereference pointers contained within the local GOT. The GOT also plays an
important role in i386 dynamic linking.

The procedure linkage table (PLT) is a structure whose entries contain code fragments
that transfer control to external procedures. The PLT and its code fragment entries
have the following format on the i386 architecture:

 PLT0:
 push GOT[1] ; word of identifying information
 jmp GOT[2] ; pointer to rtld function
 nop
 ...
 PLTn: jmp GOT[x + n] ; GOT offset of symbol address
 push n ; relocation offset of symbol
 jmp PLT0 ; call the rtld

 PLTn + 1 jmp GOT[x +n +1]; GOT offset of symbol address
 push n +1 ; relocation offset of symbol
 jmp PLT0 ; call the rtld

When an executable transfers control to an external function, it passes execution to
the PLT entry set up for that symbol by the compile time link editor. The first
instruction in that PLT entry will jump to a pointer stored in the GOT; which, if the
symbol hasn’t been resolved, will contain the address of the next instruction within
the PLT entry. This instruction pushes an offset in the relocation table onto the stack,
and the next instruction passes execution to the zero entry in the PLT. The zero entry
contains code that calls the run time link editor’s symbol resolution function. This is
achieved using the address of a function within the dynamic link editor, inserted into
the second GOT entry by the program loader.

The dynamic linker will unwind the stack and retrieve the information needed to
locate the relocation table entry. The relocation entry is used, in conjunction with the
symbol and string tables, to determine which symbol the PLT entry refers to, and
where that symbol’s address should be stored in private memory. This symbol is
resolved, if possible, and the address located is stored in the GOT entry used by the
PLT entry. The next time the symbol is requested the GOT pointer will contain the
address of the symbol. Thus all subsequent calls will transfer control via the GOT.
The dynamic linker only resolves a symbol when it is first referenced by the binary;
this is referred to as lazy loading. This lazy loading methodology of symbol resolution
is the default for all ELF implementations.

In addition to the symbol table, the global offset table, the procedure linkage table,
and the string table, ELF objects also contain a hash table and chain to make resolving
symbols easier for the dynamic linker. The hash table and the chain, is used to rapidly
determine which entries in the symbol table might correspond to a requested symbol
name. This hash table is stored, along with an accompanying chain, as an array of
integers. The hash table reserves the first two positions for a count of the buckets
within the hash table, and a count of the elements in the chain, respectively. The hash
table itself directly mirrors the symbol table both in the number of elements and in
their order.

The dynamic linking structures provide all dynamically linked executables with
implicit access to the dynamic linker; however, explicit access is also available.
Dynamic linking, the loading of shared objects and the resolution of symbols, can be
accomplished via directly accessing the run time link editor with the functions:
dlopen(), dlsym() and dlclose(). These functions are contained within the

dynamic linker itself. The dynamic linking library (libdl) needs to be linked into the
executable in order to access these functions. This library contains stub functions to
allow the compile time link editor to resolve the function references; however these
stub functions simply return zero. Because the actual functionality resides within the
dynamic linker, shared object loading will fail if called from a statically linked ELF
binary.

The information required to implement dynamic linking is: the hash table, the number
of hash table elements, the chain, the dynamic string table and the dynamic symbol
table. Given this information, the following algorithm will provide the address of any
symbol:

1. hn = elf_hash(sym_name) % nbuckets;

2. for (ndx = hash[hn]; ndx; ndx = chain[ndx]) {
3. symbol = sym_tab + ndx;

4. if (strcmp(sym_name, str_tab + symbol->st_name) == 0)
5. return (load_addr + symbol->st_value);
 }

The hash number is computed from the value of the return of elf_hash(), defined in
the ELF specification4, modulo the number of elements in the hash table (line 1). This
number is used to reference into the hash table and discover the index of the first of
the chain of symbols whose names match that hash value (line 2). Using this index,
the symbol is retrieved from the symbol table (line 3). The requested symbol name is
compared against the name of the retrieved symbol (line 4). If there is a match, then
the location of the symbol, appended to the load address of the object, is the address
of the requested symbol (line 5). If, however, there is not a match, then the chain is
followed until there are no more index values (line 2). Additional checks for symbol
type, i.e. data object vs. code object, as well as error checking have been left out for
the sake of clarity. Using this algorithm, it is a simple matter to resolve arbitrary
symbols to absolute locations in memory.

Examining Processes via procfs

Modern Unix systems provide two different methods for examining a process5. The
POSIX standard compliant method of process inspection is the ptrace() system call,
which provides crude, very limited, access to the memory image of a process. A far
superior process examination mechanism is the proc file system, commonly called
procfs, or /proc. This file system is typically available on all modern Unix systems.

The proc file system provides access to a process via existing file system primitives
(open(), read(), etc. etc.) allowing any application to easily examine the state of an

4 The Intel Corporation, "Tools Interface Standards: Portable Formats Specification Version 1.1 Vol 1,
ELF:Executable and Linkable Format" pg 2-19
5 We differentiate between process examination, looking at process memory, and debugging,
manipulating the process under inspection.

arbitrary process. Under the procfs directory /proc each process on the system has a
directory. Each directory name is the process identification (pid) of a process.
Additionally, there is usually a special directory, self, that is a symbolic link to the
current process’ directory entry. Thus a process can examine itself using /proc/self
to locate the procfs information.

The exact layout and format for procfs files is operating system dependant; however,
there is typically a file describing the current state of the process (i.e. running,
waiting, zombie); another file that corresponds to the binary used to create the process
image; a file which gives access to the address space of the process and, most
important to subversive linking, a file describing the memory maps of the process
image.

Subversive Dynamic Linking Theory

Subversive dynamic linking is not based on loading libraries, but rather on locating
existing procedures that perform this function. The dynamic link editor has to contain
functions providing library loading. It is simply a matter of locating and utilizing
these functions. The methodology is therefore:

1) Locate the ELF object providing the library loading functions
2) Locate the functions that load and unload shared objects

a) (Optional) locate the function that resolves symbols
3) Provide shared object loading, unloading and symbol resolution

The first step is the most complex and difficult. The parasite must examine the
process image of its host and discover which memory map corresponds to the
required object. This is made possible with the aid of the proc file system, and some
intimate ELF knowledge6. Parsing the procfs “maps” file is easily accomplished with
only a few helper functions. The challenge is to determine which of the many memory
maps that constitute a process image corresponds to the correct ELF object. The
mechanism of determining which memory map is the run time dynamic linker is
unique within each of the implementations, and thus will be described within the
appropriate section.

The second step, locating the shared object loading and unloading functions, requires
resolving the symbols dlopen() and dlclose()into absolute addresses within the
ELF object. Resolving a symbol within an ELF object is quite simple, provided that
there is access to the dynamic linking information: namely, the hash table, the symbol
table and the string table. This information can easily be extracted from the dynamic
segment, which, in turn, can be easily found using the ELF header located at the base
address of the memory map. Thus, resolving the necessary symbols requires only the
base load address of the target object.

6 While possible to do without the procfs, it is significantly more reliable with this process examination
aide.

The same object that manages loading libraries usually also resolves symbols within
those libraries. This is typically the case, allowing the parasite to resolve the symbol
dlsym() within the same memory map as the other dynamic linking functions. When
the object that loads libraries doesn’t resolve symbols, two options present
themselves: either locate the dlsym() function within another ELF object, or provide
symbol resolution functionality within the parasite code. The subversive linking
implementation utilizes the second option because code to resolve symbols must
already exist in order to locate the initial library loading functions.

The third, and final, step involves managing the information obtained during the first
two steps, as well as any additional information gathered during run time. This data
management can be accomplished in numerous ways. The mechanism chosen for the
current implementations of the subversive linking methodology is a linked list whose
nodes are stored on the heap. Storing data on the heap allows persistence throughout
the execution lifetime of the parasite, as well as dynamic memory management.

The primary purpose of subversive linking is to provide access to the library loading
functions, and to resolve symbols. This is accomplished through function pointers to
the dlopen() and dlsym() procedures. These pointers, as well as pointers to the heap
management functions malloc() and free(), can be stored in a structure. An
opaque pointer to this structure can be managed by the parasite, which then passes it
to each subversive dynamic linking function call. The pointers returned by the
dlopen() function can be stored in a linked list, attached to the initial management
structure, as well as returned to the parasite for later calls to dlsym(). Garbage
collection is then a simple matter of traversing the linked list and dlclose()ing each
loaded library, and free()ing the list node. The host’s process image can thus be
returned to its original pristine state in a painless and simple manner.

Implementation details

Having explained the theory we turn now to the practice of subversive dynamic
linking. The following sections will examine the specifics of implementing the
subversive dynamic linking methodology on each of three Unix platforms: Linux,
FreeBSD and Solaris.

Linux

The first step of the methodology requires knowing which ELF object provides shared
object loading functionality. Under Linux, the object that provides this functionality is
the GNU C library (glibc). The actual function dlopen()contained within libdl is
actually a wrapper for the glibc function _dl_open(). Therefore, the object that
needs to be located for the first step of subversive dynamic linking is glibc.

Locating the memory map that corresponds to the text segment of glibc involves
searching the host’s memory image. The file /proc/self/maps provides access to the
memory maps of the process. This file is comprised of ASCII strings, having the
format:

/* addr range prot offset dev inode path name */
4001b000-400ff00 r-xp 00000000 03:01 390597 /lib/libc-2.1.3.so

The first field is the base load address of the object, followed by the upper limit of the
memory map. This field is followed by a description of the protection on that map,
read, write, execute and private (copy on write), represented by r w x and p,
respectively. The next three fields are meaningless to subversive linking, the offset,
device major and minor number, and the file system inode number. The last entry is
most interesting, the full path name of the source file for the object mapped into
memory.

The inclusion of the path name of the object allows glibc to be located using only
strcmp(). The mechanism for locating the library is thus a simple string extraction
and string-searching algorithm.

1. for (i = 0; i < nread; i++) {

2. start = end = buffer + i;

3. while ((*end++ != ‘\n’) && (*end) && (i++ < nread))
 ;

4. *end = 0;

5. for (ptr = end; (ptr > start) && (*ptr != ‘ ‘); ptr--)
6. if ((*ptr == *lib_name)) &&
7. (strncmp(ptr, lib_name, strlen(lib_name)) == 0))
8. return ((void *)strtol(start, NULL, 16));
 }

The buffer is a character array filled by a read()with the contents of the file
/proc/self/maps. The number of bytes read is stored in nread. The buffer is iterated
through until we run out of bytes (line 1). A standing pointer to the start of the string
and a walking pointer, used to locate the end of the string, are both initialized to the
current location within the buffer (line 2).

This algorithm is searching for strings; therefore, strings need to be extracted from an
arbitrary sequence of bytes. For the purposes of this algorithm, strings are defined as
sequences of bytes terminated by a new line character (‘\n’), or an ASCII NUL
(‘\0’). Extracting a string from an arbitrary stream of bytes is made possible by
searching for an end of string character, as well as error checking for the end of the
buffer (line 3). The string is NUL terminated (line 4) to increase the speed of the
strncmp() below.

After being extracted, a string is searched for the requested object’s name. The search
is accomplished by pointing to the end of the extracted string and walking backward
until the first word separation character (‘ ‘) is found, or the start of the string is
reached (line 5). As an optimization, before incurring the overhead of a function call,
the first char of each work is compared. If these match, then a strncmp() is likely to
be useful (line 6). The current pointer is compared against the requested name, and if
there is a match the string searching is over (line 7). If the string matches the

requested library name, then the start of the string is an ASCII hexadecimal
representation of the load address that needs to be converted into a pointer for later
manipulation and interpretation. This conversion is done by casting the return of the
function strtol() to a pointer7 (line 8).

The dlsym() function, normally used to convert a symbolic reference into an absolute
memory location, in something unique to Linux, is actually contained within libdl.
This lack of ready access to dlsym() is not a big a problem. The same functions used
to locate and hijack the GNU C library can be reused to locate any shared object that
has been loaded into the process image.

FreeBSD

The FreeBSD implementation of the dynamic link editor provides its own ELF object
loading, as well as its own symbol resolution functionality. Satisfying the first step of
the methodology on FreeBSD requires locating the dynamic linker as this ELF object
contains the functions dlopen(), dlclose() and dlsym(). Locating the load address
of the run time linker is the first step towards resolving these symbols.

Scouring the memory maps of a process can be easily accomplished with information
retrieved from the procfs. FreeBSD procfs provides a process access to information
about itself via the directory: /proc/curproc. The file providing information about
memory maps within the process is map. Thus, a parasite can access the memory map
information of its host via /proc/curproc/map. The information is stored as a series
of ASCII strings having the following format.

/* start end real prot priv type */
0x804800 0x805500 13 15 0xc6e18960 r-x 21 0x0 COW NC vnode

The first and second fields in the string contain the start and end address of a memory
range. The remaining entries store a representation of the segment’s protection, along
with additional information potentially of interest to a parasite; however, it is of no
interest to the subversive dynamic linking methodology presented in this paper.

The mechanism used to determine which memory map corresponds to the dynamic
linker requires access to the Global Offset Table (GOT). The location of the GOT is
contained within the dynamic linking structures. The structure with the tag DT_PLTGOT
gives the address of the GOT, allowing the dynamic linker to implement traditional
ELF dynamic linking

The zero entry in the GOT array is reserved to hold the address of the dynamic linking
structures; this is for the convenience of the dynamic linker itself. The first and
second entries are reserved on the i386. The i386 ELF specification supplement
defines the first entry, GOT[1], as a “word of identifying information”. This
identifying information is a pointer to the dynamic linker’s private structure
describing the ELF object’s memory map. This information is potentially useful to a
parasite in many ways, but not to this subversive linking implementation. The second
entry, GOT[2], is a pointer to a function within the dynamic link editor. This function

7 C language longs and pointers are the same size on both 32 bit (ILP32) and 64 bit (LP64)
architectures.

provides the entry point into the run time linker’s symbol resolution procedures. This
pointer is the key to locating the dynamic linker among the many memory maps of the
process image. Locating which memory map range the pointer references into makes
it possible to determine the load address of the dynamic linker.

1. rtld_func = (char *)((int *)got)[2];

2. for (i = 0, ptr = buffer; (i < nread) && (*ptr); i++, ptr++) {

3. start = buffer + i;

4. load_base = (char *)strtol(start, &end, 16);

5. if (rtld_func < load_base) {
6. while ((*ptr++ != ‘\n’) && (*ptr) && (i++ < nread))
 ;

 continue;
 }

7. load_high = (char *)strtol(++end, NULL, 16);

8. if (rtld_func < load_high)
9. return (load_base);
 }

The pointer to the run time link editor is extracted from the second entry in the global
offset table (line 1). The character array buffer has been filled with the contents of
/proc/curproc/maps. These contents are treated as strings: byte arrays of arbitrary
lenght terminated with a new line or a NUL. Each of these strings needs to be
converted into memory locations, and the rtld pointer compared against this memory
range. The strings are iterated through (line 2). The pointer start is initialized to the
current string location within the buffer. The start of the string is converted into a
pointer by the strtol() function (line 4). If the location of the dynamic linking
function is lower than the load base of the current map (line 5), then the next string is
extracted and loop continues (line 6). Otherwise, the highest location of the memory
map is retrieved (line 7). If the pointer is lower than the maximum range of the map
(line 8), then the pointer falls within the memory map and the base load address is
returned (line 9).

After locating the load address of the dynamic linker, it is merely a matter of
resolving the requisite functions and managing the run time data as suggested above.

Solaris

The Solaris run time link editor provides its own dlopen(), dlsym() and
dlclose(). Thus, the dynamic linker is the object that needs to be located and parsed
in order to satisfy the first step of the subversive linking methodology.

The Solaris procfs file /proc/self/map is comprised of an arbitrary number of
prmap_t structures. These structures, defined in procfs.h, each describe a memory
map and contain, among other things, the start address and size of the memory map. A
method similar to that employed under FreeBSD must be used to determine which
memory map corresponds to the dynamic linker. A pointer to a run time link editor
function is located and the memory maps searched for the correct address range.

The SPARC Procedure Linkage Table (PLT) is stored in private memory as the link
editor directly modifies it. The GOT plays no part in symbol resolution. The first four
PLT entries are reserved for the dynamic link editor. The zero entry contains a small
stub function to call the run time linker’s symbol resolution routines, and the first
entry contains a “word of identifying information”. The second and third entries are
used for 64bit programs, but the logic employed remains the same. The stub function
creates a register window, and then calls a dynamic linker procedure. This procedure
is the entry point into the link editor’s run time symbol resolution functions.

Each entry in the PLT is twelve bytes long, which allows for three SPARC opcodes.
The format of SPARC opcodes requires some explanation, as it is central to the
locating of the dynamic linker. All SPARC opcodes are four bytes long, and are one
of four possible types; called formats, viz. format 1, format 2, etc. These formats are
differentiated by the first two bits of the opcode. The call opcode, which transfers
control to a location in memory, is the only format 1 instruction.

The SPARC transfer control instructions, i.e. branches and calls, are relative to the
current position of the program counter, or instruction pointer. This allows the code to
be easily relocated in memory without relocation fix ups. The call opcode adds a
signed 32bit displacement to the program counter, and thus transfers control. Since all
SPARC control transfer operations are aligned on four byte boundaries, because all
opcodes are four bytes long, the lower two bits of the displacement will be zero. The
32bit displacement can thus be stored as a 30bit number, allowing the most significant
two bits to be recovered to indicate the opcode type.

Recovering the pointer is possible by extracting the information from the call opcode
that actually transfers control to the dynamic linker. The second instruction (1-
indexed, i.e. the 4th byte) in the zero entry of the procedure linkage table (PLT0) is the
relevant call instruction. Extracting this pointer requires reclaiming the 32bit offset,
accomplished by shifting the opcode left two places; this discounts the opcode type
information stored in the most significant two bits. The offset can then be added to the
address of the call instruction (PLT0 + 4), which would be the value of the program
counter under normal circumstances, to locate the absolute memory location of the
dynamic linker’s symbol resolution function. This absolute memory location can then
be checked to see which memory map address range it falls into, and the base load
address of the dynamic linker can thus be determined.

1. rtld_func = (char *) &plt[1];
2. rtld_func += (char *) (plt[1] << 2);

3. for (prmap = buf; prmap < buf + sizeof buf; prmap++)
4. if ((rtld_func > (char *)prmap->pr_vaddr) &&
5. (rtld_func < (char *)(prmap->pr_vaddr + prmap->pr_size)))
6. return (prmap->pr_vaddr);

The address of the call instruction in the zero entry is stored in rtld_func, which
then acts as a pseudo-program counter (line 1). The 32bit displacement of the call
instruction is then extracted and added to the pseudo-program counter to locate the
absolute memory address of the dynamic link’s function (line 2). The byte array buf
is filled with the contents of /proc/self/map: an array of prmap_t structures. This
array of structures is iterated through (line 3), and each structure’s address range is
checked to see if it includes the address of the rtld function. First, the base address of
the memory map is checked, if the rtld function is lower than the base address, then
the next structure is checked (line 4). If the location of the function is higher than the
base address, and lower than the highest address (line 5), then the base address of the
map is the load address of the dynamic linker. This load address is returned (line 6).

After locating the load address of the dynamic linker, it is merely a matter of
resolving the requisite functions and managing the run time data as suggested above.

Conclusion

We have demonstrated the importance of dynamic linking for parasite code, and how
a reliable mechanism of utilizing libraries greatly enhances parasite functionality. The
methodology provided involved using platform specific algorithms to determine the
memory address of the dlopen() function within the already loaded dynamic linker.
With sample implementations for Linux, FreeBSD and Solaris we have demonstrated
that this method is legitimate and portable. Thus, the threat of under-featured parasites
has been ended forever.

Appendices
Appendix A: ELF Headers

The format of an ELF header is as follows:

#define EI_NIDENT (16)

typedef struct
{
 unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
 Elf32_Half e_type; /* Object file type */
 Elf32_Half e_machine; /* Architecture */
 Elf32_Word e_version; /* Object file version */
 Elf32_Addr e_entry; /* Entry point virtual address */
 Elf32_Off e_phoff; /* Program header table file offset */
 Elf32_Off e_shoff; /* Section header table file offset */

 Elf32_Word e_flags; /* Processor-specific flags */
 Elf32_Half e_ehsize; /* ELF header size in bytes */
 Elf32_Half e_phentsize; /* Program header table entry size */
 Elf32_Half e_phnum; /* Program header table entry count */
 Elf32_Half e_shentsize; /* Section header table entry size */
 Elf32_Half e_shnum; /* Section header table entry count */
 Elf32_Half e_shstrndx; /* Section header string table index */
} Elf32_Ehdr;

The format of an ELF program header is as follows:

typedef struct
{
 Elf32_Word p_type; /* Segment type */
 Elf32_Off p_offset; /* Segment file offset */
 Elf32_Addr p_vaddr; /* Segment virtual address */
 Elf32_Addr p_paddr; /* Segment physical address */
 Elf32_Word p_filesz; /* Segment size in file */
 Elf32_Word p_memsz; /* Segment size in memory */
 Elf32_Word p_flags; /* Segment flags */
 Elf32_Word p_align; /* Segment alignment */
} Elf32_Phdr;

The format of an ELF dynamic linking structure is as follows:

typedef struct
{
 Elf32_Sword d_tag; /* Dynamic entry type */
 union
 {
 Elf32_Word d_val; /* Integer value */
 Elf32_Addr d_ptr; /* Address value */
 } d_un;
} Elf32_Dyn;

Appendix B: Generic ELF image parser

ehdr = load_addr;
phdr = load_addr + ehdr->e_phoff

for (i = 0; i < ehdr->e_phnum; i++, phdr++)
 if (phdr->p_type == PT_DYNAMIC)
 break;

dyn = load_addr + phdr->p_vaddr;

for (; dyn->d_tag; dyn++) {
 switch(dyn->d_tag) {
 case DT_STRTAB:
 str_tab = load_addr + dyn->d_ptr;
 break;
 case DT_SYMTAB:
 sym_tab = load_addr + dyn->d_ptr;
 break;
 case DT_HASH:
 {

 Elf32_Word *p;

 p = load_addr + dyn->d_ptr;

 nbuckets = *p++;
 nchains = *p++;
 hash = p;
 chain = p + nbuckets;
 }
 break;
 default:
 break;
 }
}

Appendix C: Generic dynamic linker locator

ehdr = BASE_ADDR;
phdr = ehdr + ehdr->e_phoff;

for (i = 0; i < ehdr->e_phnum; i++, phdr++)
 if (phdr->p_type == PT_DYNAMIC)
 break;

dyn = phdr->p_vaddr;

for (; dyn->d_tag; dyn++)
 if (dyn->d_tag == DT_PLTGOT)
 pltgot = dyn->d_ptr;

load_addr = locate_rtld(pltgot);

Bibliography
1. TIS Committee. “Tool Interface Standard (TIS) Executable and Linking Format

(ELF) Specification Version 1.2”, TIS Committee, 1995.
2. Paul, Richard P "SPARC Architecure, Assembly Language Programming, and C".

Prentice Hall, Upper Saddle River, NJ, 2000

Acknowledgements

To the following people I owe a great debt:
That awesome bastard mammon_ for wasting years of his life at university so I
wouldn’t have to; Doc Marvel, for encouraging me to waste years of my life at
university (but not giving me the money for it); Silvio Cesare, for ELF conversations
that would bore normal men to death; Grendel, PhD, for spending his life at
university; _dose, for no real reason; and last, but not least, Knotty Dread for living
the university life without me (bastard).

	Cheating the ELF
	Subversive Dynamic Linking to Libraries
	Abstract:
	Introduction:
	Background
	Introducing the ELF
	Process creation and runtime ELF layout
	An introduction to ELF dynamic linking
	Examining Processes via procfs
	Subversive Dynamic Linking Theory
	Implementation details
	Linux
	FreeBSD
	Solaris

	Conclusion
	Appendices
	Appendix A: ELF Headers

	Appendix B: Generic ELF image parser
	Appendix C: Generic dynamic linker locator

	Bibliography
	Acknowledgements

